
-ND-I32 085 USER-FRIENDLY SYNTAX DIRECTED
INPUT TO A COMPUTER AIDED 112

DESIGN SYSTEM(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

UkI FE B J SHERLOCK JUN 83 FG92 NUNCLASIFIED /G 9/
mhmhhmhmhhhil|

EEE|hh|hEE|hEI
EEEEEIIIIIEEEE
IIEEIIIIIEIII
ElllEllllEEEEE
IIIIEEIIIIEIIIE

L* 6

limi 1111101

jjjj-25 111 1 114

MICROCOPY RESOLUTION TEST CHART
NATIONAL UIRTAU OF STANOARDS-153 A

NAVAL POSTGRADUATE SCHOOL '
Monterey, California

THESIS
'J e~/

THESIS U . -:-

USER-FRIENDLv, SYNTAX DIRECTED I' PU' TO A-
COMPUTER AIDED DESIGN SYSTEM

by

Barbara J. Sherlock -0

June, 1983

Thesis Advisor: A±an Ross

SApproved for public release; distribution unlimit.ed

Copy avoilIble t' DT1IC doo? DO"

permit fully legible reprodu'tion

83 Or' .

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (tien Dte Etered)

PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

User-Friendly, Syntax Directed Input Master's Thesis;
to a Computer Aided Design System June 1983

6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(a) S. CONTRACT OR GRANT NUMBER(@)

Barbara J. Sherlock

S. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORIK UNIT NUMBERS

Naval Postgraduate School
Monterey, Ca. 93940

I. CON'ROLLING OFFICE NAME ANO ADDRESS 12. REPORT OATE

Naval Postgraduate School June 1983
Monterey, Ca. 93940 ,1. NUMBER OF PAGES177

14. MONITORING AGENCY NAME & AOORESS(I diffeent from Controllinl Office) IS. SECURITY CLASS. (of tht. report)

Naval Postgraduate School UnclassifiedMonterey, Ca. 93940 Unclassified_______
ISoa. DECLASSIFICATION' DOWNGRADING

SCHEDULE

14. DISTRIBUTION STATEMENT (of thie RApet)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (. the ab roc enterd in Wlock 20, II different from Report)

19. SUPPLEMENTARY NOTES

IS. KEY *OROS (CdndA a, reva e dei i e. ei6 8 " an idaOIIfip In block number)

User-friendly, syntax directed editor, computer aided design,
microprocessor control systems, man-machine interface, control
system design automation, design environment, workstation,
Computer hardware design languages.

0.ABSTRACT (Cetue an revers side it 00coomir and ldentig by block nmber)

,his paper describes the development of a user-friendly, syntax
directed input module of a computer aided design system. Color
and dialogue are used to maximize user understanding and ease of
interface, and minimize the opportunity for error. As a result,
it is possible for the user to concentrate on the higher level
asDects of the design, and allow the system to handle the routine
details,

00 I FO7R EITION OF I NOV 6l 1 OBSOLETE
S,'N 0102- LF- 01A- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE ('hen Data Efnftretac

Arpzcved fcr public release; dist b uion UnJiRi:6 .

'1

User-Friendly, Syntax Directed Inputto a T~
Computer Aided Design System

by -A

Earbara J. Sherlock
Lieutenant Commade-, United States Navy

B.A., ellesley Collegeq 1972
1. B.A., Feppazdine University, 1975

Submitted in pa-tial a.4ilmen- of the
requirements for the degree of

MASTER OF SCIENCE 1N COMPUTEB SCIENCE

from the

NAVAl POSTGRADUATE SCHOOL
June, 1983

Author: ~/

Apprcv~ad by:_
T hesis Adv- so:

Second aeader

Chairman, Department oi Compter Scierce

-ean ot Iaforrat.o .'C.y Scienc-s

2

ABSTRACT k

This paper desc-ibes the development of a user-friendly,

syntax directed input module of a compute= aided design

system. Cclcr and dialogue are used to maximize user under-

standing and ease of interface, and minamize the oppcr-unity

for ezrcr. As a result, 't is possible for :he user to

concentrate on tbe higher level aspects of -.he design, and

allcw the system to handle the rouzine details.

L
"

plop

3

TABLE CF CONTENTS

I IRC DUCT ION 8

A. T HE PROBLEM 8

B. PREVIOUS ATTEMPTS AT A SOLJTION 9

1. Query Languages 9

2. Computer Aided Design Sys=ems 10

C. THE CURRENT SITUATIO11 IN COMPUTER AIDED DESIGN 14

D. THIS PROJECT 15

II. EACKGROUND 17

A. HARDWARE EESIGN LANGUAGES 17

1. CDL 18

2. SHPL 19

4. SDL20

7. CONLAN 23

1. DiNAogue 25
8. C SDL 24

8. E IN-MACH N E INTERFACE 25
1 . Dialogue 25

2. The User and User Psychology 27

3. Ccmmand Languages 31
4. Feedback 3.d Erro: Handling 34

5. Display 35

4 lII. DESIGN 37

A. PRELIMINAF7 ASSUMPTIONS 37

E. LESIGN CRiTERIA 38

C. PRELIIINAFX DECISIONS 38

1. Ccmputer Syst-em Selection 39

2. Pzogramming Languaga 39

3. Design Methodology 40
D SSEM COMEONENTS =. . . .- t

1. Design Language 42
2. User Dialogue and Command Language 46

3. Screen Display 49
E. EASIC INPUT AND OUTPUT STEPS 49

IV. IEFLEMENTATION 51

A. rATA ORGANIZATION 51

B. EOGHAM ORGANIZATION 51

1. De.sign53

2. Racords 53

3. Screen 54

4. Text 54

5. Messages 54
6. Menu Files 54
7. Display 55

8. Check 55

9. Change 55

10. Entry files 55
11. Files 56

12. Ccnv3rt o 56

C. SCREEN LAYOUT 56

B. SYSTEM OPEBATION 56

F. IRRO2 CHECKING 58

1. Menu Entzy Checks 58

2. Subroutine Name Checking 59

3. Statement Component Checking 60

4. Ccmple:ion Check 60

5. File Nctation 61

6. Exit Check 61

5

V. CONCLUSIONS AND RECOMMENDATIONS 62

A. GOALS OF THE PROJECT 62

B. PROBLEM ABEAS 62

C. FUTURE WOFK 6Ls

LIST C REFERENCES 66

APPENEIX A: CSD/ADA 74

APPENDIX E: SYSTEM CUTPUT 75

APPENDIX C: IMPLEMEbTAtION CODE 78

INITIAL CISTRIBUTION LIST o 176

6

LIST OF FIGURES I

4.1 Hijerarchy of Run Time Data S-.zuc--ures ... 52

4.2 Screen Layout 57 -

K4 7

I. ZR_ _

A. TIE EECELEH

Ccmpute:s are tocls to be used by people to make comple-
tion of +asks easier and more efficient. Yet work is just

now teinc done to make it easier for people -c use the

computers which are assisting them. With the variety of

both ccmiuter systems and languages available it appears

that it will De a lcng time before sufficient --zaining is

avaJlaDle tc provide computer literacy for all who want or

need i . The Z-sult o: -his is taat two distinct groups of

compute: Lsers exist - those who write programs for specific

needs, and those who use the software packages produced by

the first g:oup.
Bu: dc users and use: needs always fall into these two

clear cut groups, oz is :here a aeed for a means for uscers

to nailcZ scftware to their i:z'v-:dua1 needs, or write thei-

cwn without becoming programming experts? One no longer has

to oe an exp-rt mechanic tc know more about a car tnan how

to drive it. Dces one have t- be a computer programmer in

order to make full use of the resources and services of a

computer? In the last iecade, as computer cos-t has drcvppd

and use of computers has become more common, var-iCus
attempt have been made, and continue zc be made, tc make

access tc computers easier.
Two areas exist, in both technical and non-tachnical

fields, where non-programmers aza asing compute=s exten-

sively as means to deal with a large volume of available
information in an interactive manner. The firs: is i, uss

cf query languages tc access a database. The second is in

compute= aided design.

B. PREVICUS ATTEMPTS AT A SOLUTION

Cne proposed soiu-icn to the above problem came in

t.he exacination of ways to simplify access to an crlne

biblicgraphic retrieval system (Ref. 1]. Users of the

system had to learn a different interaction language for 01

each different computer system involved in the network. The

questions were raised of whether the needs of the computer
or the user should be given highest przority, and wheth.r i-

would be possible tc standardize or at least reach some

comprcmise on access languages the user would need to kncw.

Five soluticns were proposed, covering a range of alterna-

tives. In a totally non-user oriented approach, the user

could be required to learn numerous different languages, one

for each system. A second alternative was use of a standard

language; hcwever, nc language standards yet exist. A third

suggesticn was -he development of a system which could

understand all languages. Due to the high cost and overh.ad
involved, -his was also conside=ad infeasible. The two

remaining viable alternatives, creatizg a system whicn

appear-d tc use a standard language or a system which

appeared to be able to understand all languages, required

use of an inermediary to convert user languages to system

languages. This 'uniformizer', ,ransparent to the user,

would :eceive a ccmmand from the user in -he user's

language, check it for syntax and semantics, and then

convert it to the appropria, =. language for the object

system. The reverse process would be followed for communi-

cations f:cm the object system to the user. Thus the user

would ce ale tc deal with various systems using only one

interactive language if so desired.

9

J

.Ccmurer Aided .Desi gn S.Xsz=m~s"

cre technical examples of attempts to make us SF

computer resources c.asier have occurred i z :he fi-l of

compute: aided design (CAD) This is a growing ie_..d, with

the number cf CAD systems both in use and proposed growing

rapidly. Increasing use of CAD systems to design computer

systems in particula- is driven by the increasing complexity
of tha systems and the componen-s of the systems being

designed. Several examples of the use cf computer system

CAD systems, with various tools to make design -asier, are

the P-rogrammer's Workbench, the 3-1 ?rojec-, the Carnegie

el1lcr University Register-Transfar CAD System, and the

autcmated design of ccntol systems.

a. The Programmer's Workbench

The Programmer's Workzenca (PWB), described in

References 2 and 3, was d-veloped in conjuncticn with

compute: aided design systems to make possible a sof-.ware
develcpment system which would be gener-al enough tc be run

cr d:ftezent host machines and to be used on different

projects, thus being both machine dnd application indepen-

dern-. oblems arise in both compu:er aided design and in

software development as a result of multipla types cf

computz , mUtiple languages, multiple databases, an!

poorly managed libraries. PWB, begun in 1973 am Bell Labs,
was envi:icned as a set oz tools whicc n could be useful

throughcun- the design and maintenance of a computer system.
FWB was designed to meet basic, continaing user needs fo:

tools tz: generate and modify manuals and other docum.nts:

create, =di-, compile, execute, and debug programs; perform

systes generation, installaticn, and integration processes;

test the subsystems and total sys-ams and analyze test

rosults; track system changes and test reports; mcni-or

10

systecm Fezf crmance and be able to s4 mul aze and model Zy~zam

operatiors; convert data filas and load databasez wner

nee de d; and pzoduce management reBports ar.d stati- nc

throughout t.he developmnent and manztanazcr of a system. a .9
f irst iz~lementation of PWE focused on the documertalticn,

programming, and testiing tools, assessing them as the most

immediately useful aspects and the easiest for desigmers to

learn.

The initial PWB thus conlsisted of five modul-es.

'The jct-submissicn mcdule handle:d job preparation, rnm-

sion f.::cm work station to host, reports or, status, azd rtr
of Output. The modula-conitrol modula kept t rack of v-

S-cas tc Eizcgrams, aisigning i4dent-'if -cati--o- codes and pi:ioa-

gatig chn~es t ter related modules. ~ eaaecha-g jii
Imodule aiandled project wide changes and tr-ouble and status

report's. The documentati-on-Froduct--on mcdule provided

Macr-cs fc: fcrmating document-s such as the design specif-i-
cations, test Plans, and 'iser: manuals . finaIly , +-he test-
d-river mcdule prcivided maanis to simu'latet impLimentatiors on

varicuis ccnz~o_-ler/t cmminal ccmbinations.
USe Sf P E dais found to 4ave saviral b-enefitzs.

Most chvicus was reduced cost-. it was cheaper to develop

PW wit"- cne set of tools than t:o dork directly on. each

d~ f~ert host ccmpu,!=: in the d-asign process. The un-:fctm

pro.,rammirg anvir4-on ment p-ciuced by the ?W3 tools m adeFtann, dcc um an ta -1-on, Fogramm-'ig standazd:.zaticr,, and
tq programmer retraining (for a new project: oz new machi4ne)

o ~easier. Addit.ionally, It zeduc;?d ths conf:lict-s aris-ing

durin-'g acquisition of new machin:es as a resul~t of t:he-

dliffersacis between ideal online machames and iLdeal softiware

development machines hy providing an anvl:onment I'mdepandenti-

cf the machine involved. Futur-e work on PWB was expected in

arsas which would even further increase user -cnven-ience,

such as using a standard Programming languag-a wh-4ch PW3
6would then, convert tc code appropr~ate to the_- host machine.

t. The S-1 Projec-s

7he S-i Project, using the Szructurd

Computer-Aided Logic Lesign System (SCALD), is described ;n

References 4 and 5. S-i was an attempt to use graphics to

make the designer's job in the computer aided design of

large digital systems easier. SCALD was developed to reduce

required design t;me "by allowing the designer to expres his

design -r. the same level that he -h:.nks about It" [Ref. 4:

p. 271]. SCALD, written .n Pascal, uses -the Stanfcrd

University Drawing System (SUDS) for designer input tc the

system. Designers input a high level logical design drawing

through a g:aphics terminal. A 'macro expander', working

witn a pictcrial library of harr:ware components, repea-edly

reduces thi logical design to various stages of physical

design, until data for the actual implementation and manu-

facture is eroduced. SCALD was used at Lawrence Liv=rmcre

Laboratory to design the S-I, a 550-chip ECL-1OK prccessor;

however it -as not been applied to general computer systsm

design.

c. The Carnegie-Mfelicn University Project

The Carnegie-3ellon Universi:y Registe:-T.ansler

Computer Aided Design (CMU RT-CAD) System, described in

Beferences 6, 7, 8, 9 and 10, was developed as a system

which could design ccmpu-er systems fzom inputs containing

functional descriptions rather than structural aspects.

Designe- input tc the system includes a behavioral descr=p-

tion cf the systc.m and the user's op-lmizat:ion cr-teria (for

exam;le, time :r ccst). Also iacludad is a database of

vaai!able hardware components which can be permanently

stored and updatEd, rather than reentered each time. Ihe

system then transforms this input into a form readable by

tna 'alJccator' and attempts to constrnc: the d sized

12

system frcm comionents availaole i- the hardware lib:aZy,

withi&n the constraints given by the designer. The Cl U
BT-CAL system has been used in system simulation, design
logic vsrification, and actual hardware design. It can be

adapted tc different design styles, such as centralized,

distributed, or pipeline systems.

d. Automated Design of Control Systems

Attempts have also been made t_- use computer

aided design in the design of control systems, again begin-
n-ng with fuctional descriptions. One model for zhe automa-

tion of real-time controller design, described in References
11 and 12, uses functional level iaput. in terms of pairs of

contingencies and tasks, a function to determine when a

contingency exists, and a procedure to carry cut the

resulting r-quired task. Also included are envircnm-.ntal

data (ccntrcller input and output) , design criteria, and

desigrer ard project information. Data entered by -he

desigrer is converted into a 'primitive list' descripticn,

and then ccmpared w/th possible r.alizat-ons in a hardware

descriptJicn library until a mat.ch is iound. Implamentation

of the mcdsl includes the act-ion iinking the primitive list
-.c the hadware realizations and the development cf a

mcnstcr tc sequence the contingency test and task axacution

pai-s.
Another mcdel, LOGE-MIR [Ref. 13], uses picto-

.-al flow diagrams as the means to input basic design infcr-

3atlc:, Sirce flow diagrams are a common design format.
Because te design system is limited to control applica-

t~ons, it :s possible to establish a s-r:ct problem specifi-

caticn fcrmat using flow diagram symbols. The flow diagram

is -then conve-rted into an intermediat language and general

cptizizaticns are done. In the final step, the iztermediate

language is combined with an intarprete_ for a specific

13

microcomputer to oroduce :he design output. This two s:so

transformaticn mfes it easier zo ddapt the design system to

new micrccomputers, since the design input can remain the

same and cnly the interpreter must be rewritten. Ancther
advantage of this system is in hawing the system, :a-her

than the designer, write the design software, thus reducing

the cppcrtunity for errors.

C. THE COREENT SITUatION IN CONPUTER AIDED DESIGN

in discussing the CMU BT-CAD system, Barbacci [Ref. 9]

pointed cut tha- designers should nor have -o do "repeti-

tive, time consuming tasks" such as genezaTing detailed

design information, monitoring changes in design documents,

checking systems for electrical, logical, or physical ccmFa-

tibility, c: developing manufacturing information. Rather,

as t-echoclogy evolves, with primltiv- components beccming

more complex and the rate at which new components are intro-

duced increasing, designers must be able to design a: a

higher level, and must be able to design faster. Ross, in

commenting cn computer aided design systems in general, and

means io: design of ccnmrol systems specifically, pointed

cut that systems had to he attrac:_ve to be used, and should

"perfc-m a helpful part of the design -ask, must present the

results in a useful format, and must be easy to use"

(Ref. 11: p.87].

However, despite tne good intentions, a gap exists

between the designer of a CAD system, with his or he:
assumptions and expectations regarding the user and the

user's needs, and the actual user of the syszem. As
discussed in References 14, 15, 16 and 17, CAD systems exist

to aid -he. designer in the design process, not to autcmate

it coirpletely. CAD system users are not computer program-

Mers, hence their input should be in something close to

their design language, not iz a programming language. In

addizic:, it appears that each individual system is designed

for a unique need, and with a unique language, thus lxiting

the use:'s flexibility. The tools which thus result from

these false assumpticns require users to think in a new way,

cr learn a new language, and are more of a hindrance than a

help. Users are expected to be not just engineers or desig-

nars in a particular field, but also computer programmers
wit tiNE -to learn a special purpose language. As wath

hibLicgraphic query languages and procedures, a need exists

for scae scrt of adaptability in computer aided design

systems, and the languages which they ase.

D. TBIS EBCJECT

In an effective design environment, the designer can

focus cn design rather than spending time on implementation

details and repetiticn of tedious tasks. The puzpcse of

this Frcject was to create a design environment in which,
with a minimum of trainig in areas outside those actually

required fcr design, a user would ne able to use the avai-

lable tccls to enter :equired data. Emphasis was placed on

designing a workstation which operates in such a manner that

the use: is not required to learn an idditional programming

language.

The mcdel developed for automated control system design

served as a vehicle for this project. Tools wer. still

neeled in this model to create a workstation for design data

input and ccnvert that input to the primitLive list forma.

This pzo'ect focused on the man-machine interface of the

modal, -.he means to input the des-gn data.

The goal in designing and implemenzing this design envi-

rcnment was to build a workstation which removes the need

for the designer to learn a specific language with which to

15

enter -e data. Additionally, the system should pr.asrn- a

user-friendly approach :o :he interface. Finally, ".Le

system shculd produce an output of the data entered ir a

user riadable format which is ready to be ccnv~rzed to ":he

primitive list fcrmat.

Chaptez Two will summarize the develcpment of hardware

dascxipticn languages and the human factors which must be

considered in developing a computer aided design system.

Chapter Tbree will examine the implementation decisions made

r-garding design of the system. Chap-ter Four discussses -he

implezentaticn of the system, and Chaptez Five considers the

conclusicns which can be drawn and recommendations made for

future work.

16

~_7

II. _ACGROUND

A. HIBDUIR DESIGN LINGUAGES

A critical requirement for a computer design system is a

hardware design/description language. Over the past 15-20

years, computer hardware description languages (CHDLs) have

gone frcm being useful to being a necessity as technclogy

and design ccmponents have become more complpx. Both Chu

[Ref. 18: p. 19] and Van Cleemput (Ref. 19: pp. 554, 559]

see ccmpuiez hardware description lan-guages -s being able to

provide :

accurate ccmmunicatlon among designers and engineers;

prc-cise, ccncise, and convenianz docmentatl.cn;

a means fcr system simuiation and verifica-ion; and

a mea-s tc autcmate system design and realization.

Hardware desin progresses through a hierazchy of stages,

from system level thrcugh register-transfer and gate levels

to circuit level and logic detail. Design can be approached

from either a top-down or bottom-up perspective [Ref. 20: p.

377]. As a result of tnis, scme CdDLs deal with only one or

two levels in the hierarchy, while others attempt zo deal

with all levels in tke process. Additionally, the earliest

CHDLs described systems on only the most primitive level,

and dealt directly with implementation. As systems became

zore ccmplex, higher level descripzion languages develcped,

much as higher level Frogramming languages have been formu-

lated in the past decade.

17

1. _crL

CEL, descrited i-z References 21 and 22, was nrZo-

duced in 1965 as "an Algol-like computer design languace" -o

provide a language which could be used as a standard des'gn

language, making possible bcTh communication among designers

and well-dccumented designs. Additionally, was expected

that CDL could be used to test and debug designs, simulate

and evaluate performance, and make possible automated design

and design of more complex machizes. CDL met the basic

requirements se- fcrth by Chu that it be like natural

language, concise and precise, -ranslatable into boclean

equaticns, able to he modified as -the technology it was

describing changed, and be able to represent and manipulate

data, ccrtrcl, and timing signals in binary format.

CEL descripticns, 'sequences' (which are actuaily

uicrcprcgzams), are used to define the implementaticn cf an

algorithm, and follcw a standard format. First is a name

for the sequence, followed by declarations of registers,

subregisters, memory, terminals, azd operations. Statements

are te final component of the description. Each statemenz

is labeled, -1ther w ith a boolean label or a name if it is
the first lnre in one of the declared operations. Compound

statements share a label and are expected to be executed

within cn- clock pericd. Statements are not executed unless

the-'r bcclean labels are true; -his provides the contZl

st.ructuze. Thus, as shown "n -esfrence 23, a typical

segment of a sequence in CDL would be written:

/fezch*p3/ IR <- nDa,

boolean label statement

* While CDL makes it possible to name basic circuits,

inpu-s, and outputs, and write conventional

arithmetic and logical operaticns, it still remains a fairly

low level description language. It remains the ability to

0

descibe ti level actions such as a shift, but wcul.- b=

difficult to use at higher than a regiszer-tzansfer level

However, an attempt has been made to extend CDL into A1ZL,

Miczcccm~uter Design Language (Ref. 24], which will make

possible the hierarchical description of a system :h-ough

use of level numbers. NDL can be used with SDL-1, Software

Design Language 1, tc show hardware and software interaction

. at a given level of a system.

2. ABPL

A Hardware Programming Language (AHPL), discussed in

References 25, 26, 27, 28 and 29, was developed as an

attempt to design a functicnal level, rather than a

register--.ransfer level language. AHPL was based on the

APL programming language, with APL's vector notation making

i- ocesitle to more easily deal with entire regist ars rather
than individual fli;-flops, while at the same time being

able tc identify individual bits oz segments of registers.

AHPL attempt-d to partition a system into control sequences

and data registers, and prcvide an alternative to circuit

diagrams and state -tables which became more invclved as

systeis became mcre ccmpiex.

The standard format of AHPL consists of a declar-

ation cf inputs, outputs, and regiszers, followed by state-

ments. Rather than CDL's bcclean labels, statement lines

are labeled witn sequential numbers -o correspond to mhq

rows in ar equivalent state table. All data transfers on

one line are expected to occur simultaneously. Statement

z:-es are executed sequentially, unless followed by a state-

Zen: to tzanch to a different line. This produces a 'con-

trol sequence' of transfers and branches. As a final step,

names can he assigned to transfers to produce a "combina-

tional lcgic subroutine" [Ref. 25], with the name used

instead cf the detailed notation. However, this is the

19

closest AHL comes to beizg a functional rathcr than a

xegister-transf er language.

3. DEL

Cigital System Design Language (DDL), described in

References 30, 31, 32 and 33, was designed to fill some of

the design language needs not met by languages such as CDL

and AHEL. It was developed to meet several goals, among

them that it be useful at all levels of the design process,

from hiock structured architecture to gate level activity,

that it nct be limited in application to a specific hardware

technology, that it he able to be used as a source language

in automated design in the future, and that it provide docu-

mentation which matched the actual system organizaticn.

The DDL system model consists of one or more auto-

mata (finite state machines) whici control data facilities.

Data facilities can he either private, if controlled by one

autcmatcn, cr public, if controlled by more than one. Each

autcmatcn can be divided into segments. Repeated transfcr-

maticns cf this initial system description, or a design

:iitiated a- any intermediate level, will ultimately result

in a final system description consisting of logic equations.

Cietmeye: describes DLL as "not well suited for discribing

extremely abstract models....[or) for presenting fabricat-on

and technological ds.zails. It Js intended to bridge the

gap" (Ref. 32: p. 38]. Later revisions of DDL add a module

construct tc maintain modularity in ach transformat on

output and thus make a top-down design methcdclogy using DDL

more feasible.

4. SEL

Alsc based on the ccnc.pt tha- hardware design gces

through stages from higher to lower !evel, SDL (2ef. 20] was

develcped with the objective oz providing az "accurate

20

represe-taticn cf structural information useful cv--= a

levels of the design process" [Ref. 20: p. 378], wi- a

designer able to use SDL to map from higher level hardware

primitivss tc lower l-vel implementations.

A structural information dascription in SDL consists

of a name, external connections (input/output), component

types, and interconnections among the compcnents.

Additionally, each description must have a purpose or

possible use statement, and an iadica-.ion of which level of

the design hierarchy (systzMO r.gister--transfer) the

descripticn refers tc. Level and purpose statements are

related, and each purpose and level pair will use a

cf resources which are available at the next lower level in

the design hierarchy.

5. ". "

Ancther language which uses an approach similar tc

t h c f DL is 'IS" [Bef. 34]. Design using "S" begins wit!

a natural language description, since this is where a

designer actually begins the design process. Also, -:hs is

easier tc understand than some of the formal design and

description languages. "S" makes ir possible to process the

descripticn and add levels of incr aasng syntactic and

semantic restrictions untii all am bi g uit.ies have been

removed. A-: this point the computer can axamine implementa-

t-on possiti!it-s. Easic structure of a description in "S"
includes a declaraticn section, with input/output va-iables

and -heir types, conditions ('indibi:os') of the systEm,

and a secticn fo- prccess descriotion.

6. IS

Instruction Set Processor (ISP) notation, descr:h_ d

in References 9, 35, 36, 37, 38 and 39, and later mcdifica-

tions ISEU and ISPS, were developed as part of a set of

21

_ r :. _ ° o- , - ,- $ - - - , -- -- i --- ---.

!anguages intended tc be able to provide a desczit.O: -f a

computer trcm the tcp of the hierarchy, the syst-r.e level,

down thrcugh the lower levels. A fif-th level, the proazam-

ming level, unique to computers, was added to the tzadi-

tional design hierarchy. This programming iavel is !ccated

between the system level and the register-transfer level.

ISP is used to describe this level, that of the machine's

inszructicn interpretation cycle, where memory is accessed

and oeratics are cerfomed, n terms of the next lower

level, the zegis-er-transfer level. IS2 is thus the intir-

face between the programming level and the regis-ter-transfer

leval. Syabol.4cally a register--zansfer language, but mcre

gzneral than most, - describes what Cccurs at tae

register-transfer level, but not how it occurs. ISP

excludes timing data and other details of that sort.

Ir format, ISP resembles other register-transfer

languagas. Declaraticns include memory, processor and

registers, any external connectioas, and data types ava.-

lable. The remainder of the descrition is devoted tc the

ins-ructicn interpreter, describng the steps in the fetch-

execute cycle and each instruction in the instruction set.

ISP has been used extensively in -he Carnegie-Mellon

University ET-CAD sy.-stem described in Chapter One as a tool

to describe digital systems, Simula --: and emulate systems,

synthesize hardware and software iescr-iptions, and verlfy

designs. This has revealed some imitations in iSP

(Ref. 38]. Cue is a lack of a formal semantic definiticn of

the language, which has led to variations in the format of

descripticns in ISP, and the use of ISP to describe only

part cf a system. Ancther limitation is -he lack of a means

Erocessors in ISP.

22

q

7. CCNLAN

As the numbez of compute: hardwaze design inguages

multiplied, it was decided that :he aeed existed for scme

common tase fom which to develc future languages. As a

result of this decisicn, a working group of -he des:gners of

AHPL, DDL, AND ISP, among others, was formed in -the middle

1970s to develop CONLAN (CONsensus LANguage). Discussed 5r.

References 40, 41, 42, 43 and 44, CONLAN was intended to

provide for greater acceptance of hardware desc:z'ioion

* languages through prcviding:

a ccmmcn formal syntactic and semantic base for all
levels and aspects cf hardware and frrmwaze descriPi.cn(
in narticular :o: descr-ipticns of system structure andbe h~vcr...

a means for the derivation of user languages from zh-:
ccmcn base...

Ssupport to] CAD tools for documentation, cartificat:cn,
esagn pace ezplorat ion, [anzd] synthesis.....

(Ref. 40: p. 210].

It was epected that languages developed from Base CCNLAN

would be designed for a specific set of tasks and have a

limited scce, be, easy to learn and simpie to use, and have

a clear Semantic relationship to otler languages also devei-

cped fzic Base CONLAN.

Ease CONLAN is defined cy three i-ms, a set of

object types and cperations, syntax, and a comPuta-IoL

model. It is defined with Primitive Set CONLAN, a language

used only fcr defining other languages derived in CONLAN.

Crce a language has teen derived from Base CCNLAN, its use

as a comput-r hardwa:d design language follows a standard-

ized fcrzat. Each description sarves as a module by itself.

A description is begun with a name, followed by a listing of

assertic:-s cf static conditions and dynamic constraints.

Thpn the items from an external segment library, if any, are

23

listed, and internal and external variables are decia:= d.

Finally, the behavicr of the model is described, usIng
activities and functions, with 'end' indicating the end of

the description.

8. CSDL

%hile there have been numerous register-transier

languages developed, and attempts -o develop languages which

can trace design thrcugh the entire design hierarchy, there

have been few languages written which actually define a
system i terms cf its functions zather than its stzucture.

Additionally, most computer anrdware design languages

describe oerations which are carri-d out in a definite
sequence, rather than concurrently (programming languages

have alsc fcllowed this approach, with Ada being tbe first

major language in which concurrency was included in -he

criginal design). An attempt was made to meet both of these

requirements in the development of CSDL, Control System
Desg Language (Ref. 45], utilized in the control system

design automation project discussed in Chapter One. The
goal of CSDL was tc simplify problem specificaticn and

provide a means -o automate hardware selection and software
Froducticn fn control system design. One way -o accomplish

this was to develop a language in which the designer had
only tc Frovide the behavior of the control system, what it

did giv-n certain inputs and outputs, rather than how it

actually did it, or what hardware components were used.

CSDL descriptions have four major sections. First,

as an aid to good documentation, is an identification

s-ecticn with the designer's name, the date, and the desian's

title. This is followed by the environment, the input and
cutpuz variables to and from the controller. Third are the

contingency lists, the key to what makes this a design for

multii l ccncurrent activities. Contingency/task pairs

24

indicats the :elaticnships between a contingency, a task

which must he carried out when that contingency occurs, and

cngoing physical time. The final section in CSDL iZ the

procedural cne, with functions wi.ch return boolean values

defining contingencies and sampling the environment, and

tasks performing acticns on elements in the environment and

making changes in it.

i while BNF notation for CSDL has been written, and

CSDL has keen used as documentation for control system

design autcaticn research projects, a compiler has no- yet
been written for it and thus it has not yet been used as

source ccde input for automated design.

B. mA1-SACHINE INTEFACE

1. Dialogue

A second critical need in a compute: aided design

system is for a design environment, similar to a programming

envi:cnment. The im.cztant cons-dzzat-in in his 4s nct -he

designer cr the computer individua'ly, but their interface,

since

human factors engineering ... s concarnead with ways of
designing machines, operations and work ezv,-cnmen:s sc
tat they matci human capabilities and xim;.atcnr.s
(Ref. 46: p. 8).

I a n interacr-ve ccmputer system, tie need is for system

ccmmrcnznts with which the use: w.ll be

able -c engage in a man-computer dialoguz so designed
that he is essentially unaware of the computer C: the
medium in which the dialogue is conducted [Ref. 47: p.

249].

25

Ciaiogue is defined as "nonprogramming commuricatio-

with a terminal" (Ref. 48: p. 53], and is what makes a

computer system intezactive. Responses from the system in a

dialogue can be placed in one of three categories, hcse

which never change, those which change periodzcally, and

those which change cn a real-time basis as the dialogue is

conducted. Dialogues in the first two categories are gener-

ally writter by the Frcgrammez and stored in memory. Ahile

real-time dlalogue can be close -o natural language, it

requires a great deal of software, including both a dialcgue

translatcr or processor and one or more dialogue files, as

implemented in systems descrited ia References 49 and 50.

Dialogue style can be one of four types, based on

two independent characteristics, whether the user of the

system guides the the interchange, and whether the user is

limnted to given chcices in reply or can make a free

response [Ref. 51]. At the ends of the continuum, dialcgues

which the systsm guides, with limited cacice response, are

fas-t er, Aith fewer entries required for routine actions.

User guid-d free response dialogues provide maximum flexi-

tiiity (and maximum opportunity for error) for experienced

users. Martia [Ref. 48], iz what has become a classic in

interaca-.ie system design, categorizes 23 techniques for

dialogue design, with factors which can help determine= the

Most effective type of dialcgue for a speciflc -ask and

envircnmert.

Smith Ref. 52) provides the two essential prcper-

ties of the resulting system. It should be effective, able
to acccmilish something significant in a 'reasonable' amount

C-Z t-me, and it should be simple, although its simplicity

will be inversely proportional to the ccmplexity of the

tasks it performs. In doing t.hls, the system shculd be

self-explanatozy, self-helping, easy to ase, able to antici-

pate the user's acticns, and able to adjust to the skill

level of the user.

26

aeferenca 53 deffnes three components of a uer
interface: the user's conceptual model of tae actiots going

on, the ccmmand language used by tha user to ccmminIcate

with the system, and -he informat-on dzspiay used by the

system to ccmmunicate with the user. Increasing the signi-

ficance of the graphics facrcr, and with some reorganiza-

teon, Newman and Spgcul list four components of the user

interface:

User Mcdel - the mcdel which the user has cf the irfcr-
mation irvolved and hcw i is- being manipulated ani
processed. This ccmponent underies -he other three.

Comzand Language - how the user operates on the informa-
tion and the model.

Feedback - how -he system proyvides the user wi-h infc:-
maticn and assis:ance in running -he system and usingthe model.

Infczma:icn Display - the screen display of the sta:e of
the mcdil and -te Information being manipulated. This
can be used to ccnfirm that he user's Dercection
matches the state cf the system [Ref. 54: pp. L45-448].

Cf critical importance is the fact -that the userz's

model is a zental image, not something in writing. It is
somethiLg with which the usez must be comfortable, and be

able to tfccme familiar. Thus, to make the system easier to

learn and, at least intuitivsly, easier to understand, the

syste. should use ccnce-pts and language familiar to the

User.

2. 7he User and Cse= Psycholol

The user, and the user's psychology, are some of the

first factors which must be considered in designing an.

interactive system frcm waich the user will be able to

develop a useful and appropriats model.

Eascn and Damodaran [Ref. 55] consider as s;gnfi-

cant fac-crs ;n analyzing ccmputer interfaces: job re.lated

user attrihutes such as the traIaing provided and the

27

relaticnship between the user's total joD and the compute:

system; user requirements of the systam, including Fsychclo-

gical needs; variables related zo the task such as structure
and information handling; and individual user personality
characteristics. Martin [Ref. 48] has deter3ined six basic

criteria with which to categozize terminal operators.

first, they can be either dedicated or casual, working cons-

tantly at the terminal or only occasionally. The seccad

consideraticn is their level Cf programming skill. Third is

their intelligence level, speciicilly their short term

memory Span and ability to think logically. Fourth is their

level of training and sk'il with regard to the terminal they

are us;nS. The fifth factor is whether they are activ-

cperators, taking -I initiat-ve in tde task, or ass-ve

cnes, fcllcwing the direction of the computer. Finally, are

there intermediaries between the user and the system, c= is

tie user ebie to deal directly with it? lartin gives addi-

tional ccnsIdera-ion to the case of t-he- totally untrained

operator.

Five potential blocks to maximizing user involv-ment

with an interac-ive system exist [Ref. 56]. Users can

become bcred with a system if pacing of screens is tcc slow

cr res cnse time a.llcwed is too great. Unexpectedly lcng

delays withcut system response can lead to user panic due to

fear that there is scmethin wrong _n either the systsm or

the program being executed. Frustraticn can result from

being unable -o easily, effectively, and efficiently ccmmu-

nicate wi-.h the system and safely recover from unwanted or

unexpected actions. Inability by the user to formulate an

appropriate user's model, caused by either excessive detail p

cr lack cf structure in the system, can lead to confusicn on

the part of the user. Finally, discomfcrt can result from

shoztccuings in the physical environment, such as pcor

lightizg cr lack of sufficient work space.

28

cEla:ed to scme of these potential prcblem a=_-as arz

some hasic human psychological characteristics. First, as

noted by G. A. 3illEr (Ref. 57], the factor seven, olus or

minus w, is a recurring item in human short term memory
research. Whether data is considered as ind~vidual items,

cr recodEd into 'chunks' as, for example, letters into

words, or individual numbers into a telephone number, humans

are generally able tc recall only seven chunks cr make accu-

rate decisions among no more than seven choices. Exceeding
seven (plus or minus two) units of data in prcviding infor-

maticn can lead to information overload on the part of the

user.

While Ailler has shown that people can handle more

data if they can gicup it into chunks, human ability tc

hanIle pictorial information can also be a factor in

increasng -he axount of iaformation a user can handle when
working with an interactive system. aber and Wilkinson

(Ref. 58] pcin-t cut two principles i . human visual percep-

tion: the human vision system is designed tc capture the
total situation perceived, and the system will try to inner-

pze: all components as part of the scene. Thus, visual

displays -can be used to convey not just aits of information,
but also the structure of the information, to the user.

With th.s approach, there will bs iess need for the cbserver
to consciously interi:=t the crganization of the information

presen-:.d, or try tc group its individual components into

chunks.

This human ne.d to organize informa-±cn alsc has an

effect cn how people keep track of their activit:es

(Ref. 59]. Just as people organize bits of information into

chunks, they organize their activiies into 'clumps',

sequences of steps which lead them toward a goal or acccm-

plishmen- of a task. Compl.tion of one of these clumps of
actions leads to 'closure', indicatioa that a job, or

29

sub jc, has been finished and can be crossed ofl c n7.

mental 'tc do' list. When working Jn an interactive system,

whether uith other humans or machines, one expects not only

an internal feeling cf closure upon completing a clump of

actions, tut also a feedback response from the other part of

tne system, either during or at the end of the activ-ty.

repending cn the specific type of action, this responue is

expected within a certain, limized, amount of time. Delay

can lead tc frustraticn and lack of continuity of thought,

while closure and response brings the oppcrztunity to clear

short tirn memory and move on to a new thought. Besponse

time delays are more acceptable once closure has been

reached thar they are before, since short term memory can

store data, such as a phone number, for only a limited

amount of time. As a general rule, delays over two seconds

are acceptatle once closure has been reached (waiting for

the ranging aft-r dialing a telephone number) , but not

before (%ai-lng for a dialtone so a telephone numb-r just

looked up can be dialed). The decrease in efficiency
resulting frcm response time delays is not a linea: rela-

ticnship. Father, a delay produces a sudden drop in user

eff'ciency, followed by a leveling off for a period, what

R. B. Miller refers to as "psychological step-down

disccn-,nuities. "

Az a guideline to dealing with the characterist.ics

cf des;gners using CAD systems, Spence and Apperley

(Ref. 60] pzrcvide a checklist of items to be considered,

basid i ;a:t on the Freceeding psychological factors:

Short term memory is limited; an interruption will lead
to forgetting.

Psychclcgical clostre is needed- provide an indicatior
to th. user that a task is complete.

C:nside- computer response time; allow time for the user
toee the -asuit of &n action.

ResEcrd to control actions; predictao;lity as needed.

30

Consider human pattern recogni-ion skills; make ise of
them ir- data inter~retation.

Use words appropriate to -he Task; users need fam-lia.
terginclcgy.

artin [Ref. 48] proposes that, when desig-irg a

system, it be ccnsidered on three levels: func-ional (how

to use both human and machine capabilities mosz effec-

tively) , procedural (how to organize the system), and

syntactical (how to handle communcazicns between the user

and the system). Ginsburg, guoted ifn Reference 61, pcints

cut the critical im-crtance of the user, and the user's

perspective, in the effectiveness)f a interactive system:

Nothing can contzibute more to satisfactory system
pezzc:zance than the conviction on tie parz of the
terminal operators that they are in control of the
system and not the system ;z control of them. Equally,
nothing can be mcre damaging to satisfaczcry system
operaticm, *regardless of hcw well other aspects cz theimplementation have been handled, than the opeator's
convicticn that the terminal and thus -he system are n
ccntrcl, have 'a mind c- their own,' or are tugging
against rather than observing the operator's wisnhes.

f .12 I

ihis then leads to consideration of ".he remaining

three ccmponents of the interface: -the command language,

feedtack, and the information display, the more tangible

components which make up the system hardware and software.

3. Ccmmand Lanqua. .

Ecur design issues exist wi-t regard to the command

language 4z an interactive system [Ref. 54: pp. 451-458].
First, hcw many modes should :here be? More modes lead to

greater cczplexity and thus more errors. Second, a selec-
tion sequence for the use of commands and command parameters

needs to be determined. In this, consistency is important.

Th rd, ar abort mechanism, through welch a user can termi-

nate an action begun, must he provided. Finally, an error

31

handling mechanism must exist. A wide range of ccomand

language styles are available, including keyboard dialogue

with screen prompts (flexible bu i nefficient), a ksyboarl

ccmmand language with standard command words and a simie
syntax (reqcires more user skill) , use o. functzcn keys

(faster, simpler, but less flexible) , and menu driven (mcre

flexible, fewer errors, uses more screen space)
Scme guidelines have been proposed for designing a

command language [Ref. 53: pp. 6-7]. The language should be
consistent: each key should always have the same, or am

least an andlogous, meaning in the language. Second, a

minimum Effcrt should be all that - 'quired frcm the user

to enter the commands, with the commands most frequently

used be-ic the easiest to enter. Finally, use of only one
mode is encouraged. However, if more than one mode is

necessary, any cne ccmmand should have the same meaning in
each mode in which it can be used.

There &a nct yet agreement on whether command

languag.s should vary depending on the skill leve-l of the
user. f.czelco (Ref. 62] proposes five levels of user moti-

vaticn and expert-ise, and correspondiag types of command

languagis. The five user levels are: the user who is

learning the basics; the user who wants only to use the

system to get acceptable results with a minimum of learning;

the user whc wants zc be able to use the system more inde-

pendently; the user who wants to learn the more subtle

features of the system; and iinai.iy, the user who wants to

get the highest possible quality resul-s. The five cores-

ponding levels of command language range from simple

languages using multiple choice questions and tutorials to
more complex languages which use function keys and an editor

to crea-e ccmmand seguences for !ater use. While creating

several languages for one system is costly in terms of bcth

time and money (and memory), .ozelco thought the approach
wcrth considering.

32

I- _

Walther ar. O'Neill [Ref. 63] came to r !a:ed
conclusics. Subjects with different skill levels, w-ckin

cn either teletype (IY) or cathode ray tube (CRT) tzeminals

were able zc work with either a flexible or inflexible text

editcr. Use of the flexible language, in which users were

able to atbreviate, cmit, or change command words, amcng

cther opticns, did not consistently improve performance.

User attitudes, which were effected by all three variables

(terminal type, languaga type, and skll iewel), had an

effect cn performance, as did each of the variables indivi-

dually. With the inflexible language, even users with

litl e experience made few errors. kith the flexit1 hl e
language, fcr all bum those wih the most experience, a less

pcsirive attitude led to more e::ors. If job completion

time were the only ccnsideration, it appeared from the data

that it would be appropriate -to provide more experienced

users with a flexible command language to speed their work.

However, if syntax errors were also a consideration, experi-

ence alcra was not enough on which to base the language

decision. Attitudes, something more difficult to measure,

and mcre Likely to change over time, also had to be consid-

ered. This is ccnsistent with Aozelco's approach of

providing several levels of command language and leaving the

decision ur to the user. Unfortunately, the guest ion

remains Cf whether this approach is worth the cost.

Cre of :he mcst imporztan: components of a command

lazguagi :s a 'help' facility. Shneiderman points out that,

as with l--vels of language, user experience is nc rhe best
way to de-erm ne hcw much help to provide, "since ever

experts may forget or be novices with respect to some

porticns of a system" (Ref. 61: p. 17]. He recommends that

the uSe: control the level of help p:ovided through the help

r-quest made to the system. Relies and Price [Bef. 64]

expand on this, focusing on the aeeds of both the user and

33

the rcg:ammer of the help facillty. Help requests shcui

te simple, concise, and consistent, and the use: shculd be

able tc maintain the current task during tne help sess cn.

The help provided should be specitic to the current context,

and precise, providing only -he information needed.

Additionally, help messages should be polite, in the user's

language, and should include information on what the user

should dc next, or how more detailed information can be

obtained. from the programmer's poin- of view, it shculd be

possitle tc specify the help routines a: a high level of

abstracticn, separating writIng th6 text cf the message from

writing the rest of the code. Finally, messages should be

easy to write and easy to modify.

4. Feedback and Error Handlinj

Feedback to the user is provided with regard tc the

command language system (a prompt, response to a ccmzand, or

error message), the application iarabase (the actual task

being performed, such as text editing or CAD), and ths

d-splay te.-:ial (cursor movement or character echc). As

pointed cut earlier, timely feedback is critically

important.

Cerhaps the most important feedback is that

regarding errors. User errors can be caused by user cver-

load isendizg too much information to the user at once),

user bcrzdcm or lack of motivation (lack of a timely

respcnse, cr performance cf only passive operations) , or

inadequate ±nstructicn and guidance to the user regarding

tae system. Whatever the caase, i t is important that an

error message be given as soon as possible after the error

has occurred. Errcr messages should be shcrt and to -he

point, but should rct be nega-tive or embarrassing to the

user. In addition to stating thaz taere has been an error,

messages shculd contain useful information, such as where

34

the eircr cccurred and how to fix it. Finally, it shculd be

possible to fix the error with a minimum amount of wo:k.

5. _ri L

Twc issues mtst be dealt with in the area cf infc:-

maticn display: what will the overall layout be and how

will objects and information be represented. While specific

layout can he determined by deciding exactly when the user
requires what information, five general areas are needed: a

main work area, an area for local editing and input, an area

for system status indicators, a diagnostic area fcr erzor

messages, and a menu/informasion area (Ref. 51]. Blinking,

highlighting, or reverse video can be used to draw attention

to cer-a-n areas. Color can be used to lessen apparent

clutter on the screen, emphasize certain areas or items,

confirm -nt=y of data into the system, or make identifica-

tion of scme items easier for the user. However, if color

is to 'e used, consideration must be given to the likelihood

of cclctlind users [Ref. 48].

Men-is can be used as part of the display as a ccnti-

nuous scECrc of infcrmation to -he user, with color and

pcsIticn used tc group related items. To decrease the
amount of screen space requir-d, a hierarchy of smaller

menus can he used. Additionally, consideration has been

given -:c the use of a hierarchy of dynamic menus which

change as the dialcgue progr.sses [Ref. 65]. With this

approach, three menus are available on the screen at one

time: a costant menu of most frequeznly used commands, the

dynamic menu, and a menu of menus. While dynamic menus are

possible, it is not yet known how feasible a system of this

sort would be.

Based on the above information on computer descrip-

tion languages and human factors, :he design procedures

f olcwed and decisions made will be examined in Chapzer

35

Thr -a Iaplementaticr. ietails will ba diA.scussed in Chap-tr

Four.

36

III. DESIGN

A. PRELININIRY ASSURPTIONS

The underlying ccncepts guiding tne design of the system

follow -hcse stated by Shneiderman:

build systems that behave like tools; and

reccgnize the distinction between human reasoning and
computer power (Ref. 67].

ar-in ec:ces these ccncepts: " Do not ZrV t 0 makq the

computer cc _ete with man in areas in which man is superior"

[Ref. 48: p. 7]. The intert of the system is, as noted by

Thomas [Bef. 68], to make possible the sy.thesis of designer

azd ccmputer, tc prcvide (a component of) a design system

which will aid the designer in top-down design of a ccntrol

system, hith. behavioral descriptions as input.

Several preliainary assumpticns were made rqga~d-ing the

desige_: and the system. First, the designer has scme

general prcgramm: knowledge (i.e. _s familiar with the

concepts cf block structured languages and top-down design)
but dces not necessarily know any specific language well.

Second, he or she will also be familiar with the basic

compcnents of a contil system - :ae contingency/task pairs,

the envircnmental variables, .ha design cr.-eria, and the

task and contingency subroutines - and the information

included in each of these components. Third, the designer

will use the system cocasionaliy rather than continuously.

Finally, for its initial implementation, the entire design

will be entered and a realization produced at one time.

37

B. DISIGN CRITERIA

Design criteria were considered in twc categories: what

the system should be able to do, and how it is organ'zed to
do it. Ihe system shculd (in order of decreasing pricrity):

not requize the designer to learn a specific design/
pzcgramzing language;

minimize the amount of repetitous, tedious wcrk
requzed from the designer;

minimize actions takea bg the system implici ly cz.by
default which could lea to h;dden erro-s; require4expl cit confizmation from -he designer wnenever
possihl6;

allcw the designer to make changes to already entered
data withcut having to reenter a.U of the data;

be able to respond to different levels of designer
experzise.

Regarding system organizaticn, it should be:

fully mcdularized;

impleasrted as a ainimal set, with the ability in the
future to:

add new constructs and/or subroutines to the design
language;

add rew types and categcr-es of design izformaticn;

mcdify format 'n which the design data
st :b, oth during execution and when written to a

C. PRELIMINARY DECISIONS

Several basic decisions were necessary prior tc actual

project design.

38

-J4

Cp

The primazy consideration for system select'ion was

that the system be available for dedicated work. However,

it was alsc important, since an in-eractive sys-tem was to be

designed, that the system be able to meet most, if not all

cf t ta equizements generally provided fcr interactive

systems. Martin (Ref. 18] proposes, as conslderaticns when

selecting ccmponents for i+.terac-:ve systems, that there be

means fcr i-put by hcth the user and some document scurce;

means fc: cutput; a display screen with appropriate capabil-

ities, such as color; tools to provide the desired or needed

level of security; and tcois for arror control. Irby

[Ref. 66] expands c. the required screen capabilities,

giving five necessary -ems: -he programmer must be able to

wri-e -c arbitrary pcsitions on the screen, be able tc map

conceptual display primitive operations to device primi.ive

operat'ions, be able tc highlight text and remove high-

lighting, and have a ccordnate input device which can be

tracked an the screen. It was also considered desirable,

though .nc necessary, -hat it be possible to scroll the

screen, use different character fonts, and have a terminal

irntell-igrt enough tc be azle to reply to questions from the

dlspiay terminal interface. The 4AX/VMS system, with GIGI

(Graphics izage Generator and In-erpre-er) terminal and
wonitcz [Ref. 69) was available at NPS, and, since it met

most cf the above reguirements, was selected as the system

upon which the project would be impleman-ed.

C f critical importance ;as the ability of the

languagi selected tc provide the aec.ssazy data structures,

primarily records as elements of lznked lists. Pascal, Ada,

and ''' were cons;de:sd. Pascal was selected because, in

39

additicr tc providing the necessary data structures,
relatively self-documenting, a r am of some imFortance

s- nce it is expected that future researchers will continue

work cn this project. Also, Pascal is a well tes-ed and

cperatical language.

3. Dein todclocy

Larce softwaze projects require some crganized

apprcach to de-sign and :mplementation. While 'step-wise

rsfinement ' is a frequently used tam with regard to soft-

ware design, there are numerous ideas and theories abcut

exactly hcw to carry it out.

Cne of the mcre commonly used methodologies is that

develcped by Constantine. The 'structured design' methcd-

clogy [Ref. 70] prorcses that syst.ms be considered as an

input/p:ccess/output sequence during design. Attent:cn is

first f.cused on what functions the system will perform.

Then these functions are examined in terms of thei: input

and output compcnents, and what transformation must cccur

between the two. This process of determining functicn,

decomposing into input/process/output, and then analyzingfuncton, I repeated
each of these mcdules 4a terms of unction, is

until the system has been compietely decomposed. Only at

that pcint does implementation begin.

St ructur=d design may be more commonly used than

cther desigz methodologies because it is easier to ccnceptu-
alize and use, focusing as it does on input and output.

Additionally, its dccumenta'.on appears similar to flow-

charting, althcugh there are significant differences.

Finally, 4- can be used in conjunction with IBM's

Hiererchical Input-Process-Output (HIPO) design documenta-

tion tecbnicue.

40

.-' - . -v- -.- - - - - - .-- .--- .- J:

Another software design approach is suggested ny

Parnas ir References 71 and 72, where he emphasizes cor.c.n-

trating cn the factors most likely and leas- likely to

change, and hiding artitrary implementation decisions. With
this apprcach, specific abstract data structures are hidden
within one mod ule, with module interfaces revealing a

m inisum aacun: of izfcrmaticn about design decisions. As a

result of this approach to decomposition, it is possible to

break a sysrem down into levels of subsets, with the lcwest

level a basic, iiniaum subset. Nodules can be placed in a
loop-fze . 'Ises hierarchy' of modules which use lower level -

modules.

Ihis information hiding and hierarchy of users

criteria f-cr system decomposition, ilacing emphasis cz what
in the system is likely to change in the future, facilitates

system change at a later date. For this reason -t was

decided that an attempt would be made to use a combnnation

of the tuc approaches above. There will be attempts in the
futare tc modify c- expazd the i4mplementation of this

;_-ojec-, ard consideration was given to makina that task as

simple as pocssible.
IL line with the design guidelines given by Parnas,

consideraticn was given tc where change was most likely to

cccu: 4n the design system being built. Three areas were

considered: the format of the data entered, the ccntent of

the data entered, and the command language used tc enter the

data. It was decided that the content of the data which
would be entered would be the least likely to change signi-

ficantly, since control system components are :a:rl" stan-

dard. However, the format of the data, in both the scurce P
language and primitive list realizaticn, was likely to

caange. Addit ionally, it was likaly that -.he comman d
language would expand to allow for different levels ci user

experti4e.

D. S7STI11 CCPONENTS

Refeence 38, in analyzing ISP, provides guidei-.:es

for the developemnt of the ideal behavioral hardware

descripticn language. It should:

provide abstraction facilities with which to add mcre

pr.miztives;

make it pcssible tc specify behavior without structure;

support structured programming constructs;

make it possible to describe application specific
infcrmaticn;

have --ke capacity tc express concurrency;

have the capacity tc describe multiple functions;

have .ha capacity to express synchronizing primitives
explicitly; and,

have a formal semantic definit-ion of ianguage
operations.

Befazencre 73 adds the further guidelines that a desIgn

language shculd be suitable for a variety of design applica-

tions, be easy to l.arn and document through uniformity and

brevity, be suitable for use with in-teractive graphics, and

be adaptable to more complex designs.
In tha specific design languag- to be used, a means

was needed to input designer information (zame, daTe, design

name, comments) , envircnmental information on variables,

coctingency/task pair infcrmat;.on, criteria informaticn, and

tae actual functions and procedures for the ccntingsncies
and the tasks. Additionally, the language had to te abl.e to

store the data during run-time operations in a format

through which the data could be easily transferred tc the

IADEFI (identificaticn, application timing for C/T pairs,

design criteria, ard environment) fila and the primitive

list ci a ub cutines used in realization of the design. A

42

final requirement was that the design also be able 1o be

documented by an easily readable source file.

While Biehl and Dietzinger [Ref. 13] used flow

diagrams tc enter data, the development of higher level

languages such as Pascal and Ada is leading to the use of

languages rather than flowcharts to explain program design

in the Orit-d States. Additionally, use of a high level

language in design is closer to the algorithmic process,

more like natural language , and makes the programming of

software easier and mcre efficient [Ref. 74: p. 431]. For

these reasons, the decision was mad-. to use a language,

rather than pictorial flcwcharm representaticns, tc enter

data.
A blcck structured programming language was neces-

sary since without it the control system tasks and functicns

could nct be properly entered. Wita regard to the remainder

cf the design data, -he possibility of having no formal

design language, but instead enmerzng data directly intc -the

pzimt.ive ist, was considered. Howaver, software documen-

tation Is becoming incrsasingly important, ard it was deter-

minEd that some input record in a more readable form than

the rrimit-Lve list was needed.

As the design of txe project progressed, it was

determined that two languages, rather zhaa one, needed to be

developed. The first language was neesdd to, as a minimum,

nente.r the func-iLcns and prccedures involved in the cczn:n-

gancies and tasks, and store data during execution. This

can he ccnsidered a run-time language, and is wr.tten in

terms cf -he da-a structures used during operation of the

design syszem. The second language needad was a more formal

written language, tc be considered as a source code reccrd

cf the design input, and would include the control struc-

tures of the run-time lazauage as well as additional format
* - i"oruaticn.

4_.o sat4z

43

'Ibree language alternatives existed: use CSrL as

exists, or with slight modifications; find some cther

language; cr design a new language, either from scratch or

from existing prcgramming languages.

CSDL, or a mcdification of it, was consider d as a

first alternative in language selection, since its BNF nota-

tion has been written cut completely, thus facilitating the

develcpaent of a compiler or a syntax directed elitor.

However, since its developmanz CSDL has not become a widely

used language. hile it is conceptually helpful as a model,

a dacisirc was made nct to become tied to the actual syntax

cf CSDL, hut to consider the second and third al:erna-ives.

Ccncerning the second alternative, finding anc-her

language, few other control system design languages exist.

ihile the id-a of using a derived CONLAN language is

appealing, CUNLAN is still in the developmental stages.

Ccnsideration was also given to developing a new

language c= adapting an existing language (specifically Ada)

to ccnt-:ci system design and descr:iption. Ccntribu-cs tc

Reference 75 considered the requi:ed components of a hard-

ware description language, and had mixed ccnclusicns

regarding adaptation of Ada as a hardware description

language. However, Ada does meet many of the guidelines

cffered ea-lier in this section regarding development of

hardwaze description and design languages. Also, Ada has

been adapted tc be used as a program design language,

FDL/Ada, as described in References 76 and 77.

FEL/Ada was developed for three reasons:

Ada will become a standard aogamming language for
embedded systems, and use of PDi.od a will ease the tran-
siticn frcm des-gn to code;

Ada iJs a state of the art language., with support for
scftware engineering concepts, an is also carerully
ccnrtzcled;
The Ada environment calls for man ysuppor-: tools which
w:nll alsc he able tc be used w.ti PDL/Aa.

44

In EDL/Ada, components of Ada were used as a bais.S

for develcping a software design language which cculd be

processed with an Ada compiler for error checking, bu-: not

actually executed. FDL/Ada ,s a mapping from PDL intc Ada

us ing:

some cf Ada exactly as written;

some of Ada with additional constraints on its use;

some design information written as comments In standard
Ada;

some flatures built from Ada pzamitives; and

an extenscn of Ada's s-andard package to include dafi-
niticns useful to Fzogram design.

PDL/Ada uses the same syntax as Ada.

For reasons similar to those which led to the dzvl-

opment cf EDL/Ada, the decision was made -o develop CSD/.da,

adapting Ada to be used as a control system description,

using CSEL as a guide. First, it appears that Ada will

becoxe a mcre widely used languag. as it is implemen-td in

Dzpaztm-rt of Defense embedded systems. Second, Ada's

strong typing provides a means to control and group glohal

and lccal vazrables csed in nhe design. Additionally, use

cf Ada makes it possible to develop a standard package of

tvpzs available for variables to be used in designs.

Fclicwing t h. PDL/Ada model, a design standard
package cf ,taiang acceptable variable types was written tor

CSD/Ada. The resign Standard Package and a mcdel ior
programs in CSD/Ada can be found -a Appendix A. The run-

time daza structures, written in Pascal, can be found in the
impleer-zaticn ccde ccntained in Appendix C.

45

2. Use= Dialoauq. and Command _anaqae

Given the design criteria that the user not have to

learn a speciflc design/programming language, several alt-r-

natives existed regarding the design of the dialogue and
command language. One was havi.ng the designer enter

subrcutirenJformaticn using the algorithmic language, with

an edircr then translating the input to CSD/Ada. However,

this wculd still require that the designer learn a language

for the subroutines and a format for tae remainder of the

informaticn.

A second alternative was using a syntax directed

editcr to lead the designer through -he full CSD/Ada format,
with reguests for the appropriate information. This would

reduce both the amount of typing required from the designer,

and the cFpcrtunizies afforded the designer -to make errors.
syntax directed editor (SDE) , discussed in References 78

and 79, and also known as a grammar driven [Ref. 80],

language di~ected (Ref. 81], partLally compiling (Ref. 82],
or smart (fef. 83] editor, allows a programmer to focus on

the meaning rather than the punctuation and vocabulary when

writing a program. One example is the Cornell Prcgzam

Synthesizer, described in References 84 and 85, used as a
tool in teaching programming and designed to allow the user

to ccrcentrate on the abstractions of a program rather than
or. the syntax cf a specific programming language, thus

support.ing top-dcwn programming.

SLEs are generally leveloped from the BNF notation
for a language, and, with prcmpts, lead the prcgramner

through a prcgram fzcm beginning to end. Using a menu or

coded keys, the programmer types in the code for a speclfic

compcnent in or construct of a program. The system then

shows the user the fcrmat for the construct and gives the

cppcrtunity to select from a list of possible alternatives

46

to fill in t-he blarks. This ensures that the programs

written with an SDE are always syntactically correct.

ihile better than the first alternative, this

approach was also not ideal, since the designer would still

te required to learn a specific language format, if not

syntax. This would be appropriate wa=e the system being

used as a teaching tool. However, in this case the purpose

cf usin an SDE is tc make it possible for the designer to

avoid having to learn either the syntax or the format cf any

specific language.

A third alternative, use of a partial SDE, was

consider=d and selected as the most d3esirable option. The

SDE wculd lead the designer through the statement block of a

subroutine and the. r-quest declaration information cn vari-

ables usd in the subroutine. Wirh this partial SDE, the

designer would not have tc trace through the entire program

structure of both declarations and statemen-ts, but could

instead ccncentrate cm the sta-ement components (in CSL/Ada

the ccn-ingency functions and task procedures), with the

editcr -.hen cbtaining the remaining declaration type infor-

mation needed. Variable types would be limited, through

menu s-lE-ction, to those types included in the CSB/Ada

Design Standard package. This l-mitation is in line with
eferincs 86 which pcints out that parsers are often more

complex than needed, and can be simplified by limiting

Frogrammirs -o a tightly controlled list of alternatives

rather than being able to handle all possible entries.

Reference 82 also contains this suggestion, particulaiy

regarding types allowed for variables.

Additionally, a means would be provided tc do

semantic type checking during design data entry. This

approach is suggested in References 37, 88 and 89, which

describe an "incremental programming environment (IPE)" of

which an SDE is only par-t. In the IPE, the SDE and the

47

incremental program constructor work together interactlvely

with the Ercgrammer. As parts of the program are entered

through the SDE they are checked for semant-Acs. Then, if

the semantics are correct, intermediate code is generatd,

and the pieces cf the program are debugged. It appeared

that the semanzic type checking of the IPE coculd hbe applied

to the ccnt:cl system design environment, using the run-time

data structures develcped fcr design data entry.

F.nally, lists and prompts would be used to obtain

the remaining identification, criteria, and contingency/task

pair infcrmation.

Three options existed as ways to have the user enter

choices during data entry: type in the choice word (either
all cf it or part, say the first three letters), use a menu,

or use 'softkeys'. The first al-eznative was eliminated
immediately for two reasons. One, it required excessive

typing from the designer. Two, it introduced related cppcr-

tuniti.s fcr errors. Both of these consequences could

create tedious, repetitive work for the user, contrary to

the design principles cf the system.

With a menu, a user is required to move a marker of

some sort (a box, an x, or an arrow) through a list of

optionz cn -he screen, using cursor position keys, until it

indicates the choice heing made. dhen the marker is next to

the choice, the ente= key is pressed -o indicate the selec-

tion. While. not as tedious as en-ering whole words, several

actions can be required from the user to get the marker to

the desired choice in the list, and some eye-hand ccordina-
tion is required to know when to stop. For that reason this

cption was also eliminated.

Use cf sof:keys (Ref. 90] also Involves display of a
list cf chcices on the screen, with each choice coded tc a

key on the keyboard. To indicate a choice, the user presses

the key paired with it. Possible choices can be changed by

48

LO ..

changing the screen display. The use of sofzkeys appea-ed

to allcw maximum flexibility of c-hoi"ces wh-ile minimizing

both tha work required from the user and the cpportunity -or

user er=cr. Fcr these reasons it was selected as the

primary means for data entry. However, since use of soft-

keys is tasid on a menu type display, and 'menu' is a mcre

ccmmcrly recognized term, 'menu' wili be used in the.
remainde: of this paper to refer to the softkey means of

data input.

3. Scre . Display

Wi-h the dialogue azd command language decisions

made, a need still existed for a way to make the user aware

of the choices available at each step in the design data

entry p=ccess. To avcid user confusion and maintain ccnsis-

tency as far as where to look for input options, echo of

data entered, and design wratten in CSD/Ada, the decision

was made to use a standard screen format, with categcries of

informatan always in :he same areas of the screen.

Additionally, the decision was made to orovide the user with

a list cf choices at each stec n the data entry rccess.

This would make the system seif-explanatory and ainimize the

need fc- written inszructions for the use:, following the

recommendations in Reference 52.

Z. BISIC IRPUT AND OUTPUT STEPS

as a result of the design decisions outlined abcve, it

was determired that the input of design information would

have f4ve modular components:

obta:- identification information through the use of
prczpts;

obtain the contingency/task pair data thrcugh the use of
prczpts and menus ana link it to the related function
and procedure;

49

obtain the criteria informa,ion through the use of
prcmuts ar.d menus;

use a partial s ntax directed editor to obtain the
szatement blocks if the functions an procedures, making
lists cf varlable names as they are used;

traverse -ch- list cf variables when the entry of each
subroutine Is complete, making up both the environmental
table and the local variable tabi -.

Users will be able tc select the order in which they will

work in these areas, with the only limitation that global

and Iccal variable lists be updated following the entry of

each subrcutins.

Cnce the user decides to exi: the design entry phase,

data will be passed to the second phase of the system. In

phase twc the user has three cotions: convert the data for

a realizaticn, zake changes in the data, oz write the data

to a file in CSD/Ada format. If the user decides to ccnvert

the data -c primitive list format for a realizaticn, the

system will check tc ensure that data has oeen entered in
each categcy and subroutines have been linked to the appro-

priate ccrtingency/task data. If the decision is made to

wrte the data to a file, identification informa ticn,

cont ingercyi/task pair information, and design criteria will

be written as comments in a conventional Ada package, with

the environment table and the subroutines written as decla-

razcns with comments and subroutines in a conventicnal Ada

cackage.

Chapter Four details the actual implementation if this

system.

50

IV. IMPLEMENTATION

The system was inplemened basically as planned and has

be n run successfully. An example of the system output is

included as Appendix E. Implementation code is included as

Appendix C.

A. £ATA CHGANIZATION

Organizaticn of run-time data into a hierarchy of

records, as mentioned in Chapter Three, and shown in Figure

4.1, provided the tasic structure for impiemetaticn. A
header -eccrd, the root of the data tree, was used to

provide pointers to identification, criteria, contingency/

task pair, environment, function, and procedure reccrds.

* Iutiple reccrds were able to be added in a linked list form

for repeating contingency/task, environment, and subroutine

¢ccurrences, while single records were used for idsntifica-

* tion and criteria data. In some data subsections, an cccur-

rence also became the root of a subtree of records
conataining specific types of data, such as comments, volumes
and ucnitcrs for criteria data, or local variables and

statements fcr subrcutines. Addi tozally, pointers were

used to linR the contingency/task pair record and the func-
tion and ;rccedure records to waicn it referred.

B. PEOGEAN ORGANIZATION

Five major sets of subroutines were needed for data

entry and manipulaticn. Listed from highest to lowest

priority with regard to initial implementation, they were:

95

U.4

4I _ IL _ _ I i , _ e - - _ _

I CL

° - , -. I
I 6. 0 0

* .UU J S

oo a
- CC4

0 I 6' 0 U

14

I 00

c

- go

I._ _ _ _ I 4.

52

- - -- - - --- - - -0

A

eLtry : cttain original infcrmation from designer;

write : read info-mation from a record, write it -c a
permanent file for storage;

change : make changes to data already entered in
=eccrds;

ccnvert : convert data in t-he records tc primitive list
format for realization;

read : read information from a file already created back
intc records to work with it.

Within each set, lower level subroutines were clcsely

matched tc the record with which they would be used.
Addit-cnally, routines were needed -o handle graphcs

displays tc the screen. This included instructions, menus,

messages, and display of data entered.

Subzcut.nes were categorized and placed in one cf four-
teen files, as described below. Subroutines within each

file were divided into categories by level of complexity,

for example, primitive routines and higher level rcutires

waich called them, and by category of des.gn data with which

they dealt, for example identification or contingency/task

pair.

1. Z es iq~

EISIGN.PAS is the main fils. It contains code to

tell the system compiler to include all other files, and it

contains the main sutroutine and variables which -t uses.

It also ccn-ains intrcductory and _nstructicnal subroutines,

as well as other sutroutines called dizectly by the main

subroutine cr for which other appropriate files have zot yet

been created.

42. eccrds

FECCRDS.PAS contains the data types and data struc-

tures created for the run-time environment. While it

consists primarily of records and pointers to them, iz also

53

contains scme basic type declarations such as 'line_-szel

and 'name-size' used with character strings, and varicus

enumerated types used in the records.

3. Screen

SCREEN.PAS ccntains the primitive graphics subrout-

ines, fcr example tbcse used to ciange screen set-up codes

and alert the terminal to an upcoming graphics command.

Additicnally, it ccntains subroutines to draw the screen,

erase the tctal screen or specific areas of it, and position

the curscr to write a message.

4. mat

IEXI.PAS consists of subroutines to write the title

screen and instructicnal screens.

5. Messaces
MESSAGES.PAS contains one subroutine, 'Message',

which uses a case statement to write various messages,

call d by number, to the message area on the screen.

6. enu Files

MENCS.PAS and MENUS2.FAS contaLn both primitive and

-higher lsvc-l routines to write menus -o nhe screen menu

area. Praitive routines are used to establish curscr posi-

tions for menu lines, line markers, and instruction lines.

Menu use in structions are included as subroutines tc be

called by the two basic types of menus used - data entry or

menu ccde entry. Meru components which will be used by more

than cna menu have teen written as separate subrcutines.

Higher level menu subroutines have been categorized by the

data tc which they apply • en tificatin, criteria,

con-izaercy/task pairs, subroutines, and variables. Menus

for entering variable informa-icn are in &ENUS2; all ether

54

menus are located in SENUS, along wirih code to tll tne

system compiler to include the SENUS2 file.

7. L.2- a

DISZLAY.PAS consists of subroutines used tc write

data entered in the run-time records to the screen for feed-

back to the user. a lower level subroutine is used to

establish standard cursor posi-ions for each line, with

higher level routines categorized zy data section.

8. Check

CBECK.PAS contains primitive rout.nes called in both

the entry of data and the changing of data -o check char-

acter strings, digit strings, and traverse linked lists of

records checking for matching names.

9. C

CHANGE.PAS ccntains routines used the make changes

in data already entered and displayed on the screen.

10. Ent: x Files

ENTE&PAS and ENTER2.PAS contain sunroutines used

tfor he actual data entry. ENTER contains primitive rout-

Sines tc enter character strings, digit strings, and lines of

comments, and check subroutine names already entered, as

well as higher level routines used in entry of identifica-

tion and contingency/task data. It also includes the main
data en-ry routine, and code to alert tae system comFilez to

include ENTER2. EITER2 consis-ts of th =_ subroutines usid to
enter criteria data, functions and procedures, and variable

data.

55

FILES.PAS consists of subroutines -1to o pen a f:ie,

writ the data from the run-time dat a structures to ' t. ir a

format similar to Ada, and then close tbe file. Subrcutines

are categcrized by the section of data with which they are

concerned, such as criterla, or cont-ingency/task pairs.

Addtiralya lower level :outine to write comments tc the

-- file is included, and called by se~vral of the higher level

routines.

12. Ccnvert

*CCNVERT.PAS contains routinas used in conversion

L ifrom the run-time data structure format to primitive list.

format icr realizaticn.

C. SCREEN LAYOUT

Lis~lay of instructions uses the entire screen. Fcr all

other actions, the screen is divided int-o four areas - menu

.-and menu Instructions, inputs messages, and data lisplay -

with text in each area color coordinated, as shown in Figure

4.2.

D. SYSTEM CFERATION

System opezat-ion begins with tha display of a title

screen. A-, this ocint the user is given the opt.Jon of

reading scme general instructions firzst or beginning data

entry i~mzed_-atsly.

Desi-gn data entry follows a path from the mcre gezezal

areas to the morea specific. Thne user is allowed to pick cne

of five areas in which to en t r: dat-a -identificaticn,

c~ite,:a, ccnti.ngency/task pairs, furnctiozs, or procedures,

oto decide to exit the data entry section. Once cne of

56

V.

ige) heading1 I I'i (magenta,

bodyI!I I
I (wie

(cyan)

* instructions
hite)

(w hite)__

_______ ________

Piguze 4.2 Screen Layout.

the data areas is selected, the user is led through all of

the data itams needed for one set of data in that area, with

menus used to prompt and limit the data choices which can be

entered. Entries are echoed immediately in the input area

cn -the screen. In addition, when all dat.a has been enteard

in a sEctCc, the ccmplete set of data is written tc the

screen n the display area. Aihougn not yet fully impie-

.ented, at this point the designer will, in the future, be

able to make changes in the data displayed.

Fcllcwing data entry for a section, the user is returned

to the start of the data entry loop and again allcwed to

pick cn, of the five data entry areas or exit, with the

condition that data can be entered in the identificaticn and

criteria areas only crce.

57

When the user is done entering data and decides to sxit,

the system moves to phase two, data manipulation. Although

not yet fully implemented, t h r z - options are available.

Changes can be made to the data, it can be converted :za

primitive list f crmat, and a r-ealization can be generated,
or t can be wr-ittten to a permanert file. Again, the user

continues re-tur-ning tc these options in a lcop until1 he or

she decides to exit from phase two. The exit from phase two

termirates the prograz.

E. BEGE CEYCKING

There are several components of the error checking

stem. In general, data is checked when it is entered.

when an errcr is found by one of the components, cr ccnfir

mation of an entry is needed, a message is written to the

message area of the screen wit--h specific information.

*1. Menu Zrntly Checks

*Entry of data t akes oze of -aree forms. The user

* can be asked to ent-er either the code for one of the choices

cn the metu, a character string, or a numerical value. In

the first case, If the user enters a code not in the menu, a

message will41 be written explaining the error and asking that

the entry be repeated. In the second and third cases,

specific subroutines are used to chacr. data entered.

a. Check-Item

'ChecklItem' is called when the user is entering

identi1fiers, and it- checks for errors commonly made in vaz-

0able and subroutine names, as well as specific design system

constraints. it will giv4e an error message and ask for a

repeat of the entry if the identifier -s lcnger than ter,

characters, does nct start, with a A.etter, or contains

58

blanks. Entry cf cnly a carriage return will result i= a

string of length zerc, and the user will be asked tc rpeat
the process.

t. CheckDigits

'CheckDigits' is called when the user is

entering numerical values. It reads input as a character

string and checks to ensure that length does not exceed Six

digits (a size selected Zo .nsure that a set of

contingency/task data can be writttaa as one lina cf a

file), ard caly digits have been -nt.red. It then calls a
system library routine to convert tae character string of

digits to .ts integer value. Entry of only a carriage

return will result in a value of zero being assigned tc -he

variable in question.

2. _u~bcuti_ Na2e Chec__

Eoth contingency/task and subroutine data =entry

routines do extensive subroutmine name checking, based or the

premise that each functicn and procedure will be part of

cnly cna contingency/task pair. Subroutine records can be

entered through either subroutine en-try procedures or

contingency/task pair en-try procedures. Beth will enter

name and subroutine kind. However, subroutine entry will

enter statements and set the contingency/task pointer to

nil. Contingency/task pair e.ntry will enter a contingency/

task cinter and set the statement pointer to nil. This

makes it possible to determine how much of the da-ta related

to a subhcutine has been entered.

When entering contingency/task pair data, a check

will be made of both the ini-tialization and run-time lists

to ensure that neitter the function or subroutine has been

izcluded in a contingency/task parr already entered. A

check will then be made of the funztion and procedure lists.

59

If the subrcutine has already been entered, it will be J
linked tc the contingency/task pair record. If not, a new

subroutine record will be added, the name and kind an;ared

with the other fields set to nil, and the subroutine zeccrd

will he linked to a ccntingency/task pair z-ccrd.

when a subroutine is to he entered, a check will be

made to see if the name has already been used. If it has, a

check will be made of the statement pointer. If it is not

nil, a message will be returned that the entire subroutine

has already been entered. If it is nil, this record will be
selected as the one in which to en.er the rest of the

subroutine data. If the name is not located, a new record

will be added, the ccnt.ngency/task pointer set to nil, and
the rest of the subrcutine data entered.

3. Statement Conconent Checkija

Cse of the partial syntax dr.cted editor fcr entry

of statements ensures that all statements entered are

syntactically correct. 3enus used to list options for

informaticn entered about variables, such as orecisicr. or

technclogy, minimLze the chance of entry of incorrect data

by the user. Finally, use cf pointers to li-k all variables

in an expressicn iakes it possible to implement mcre

detailed type checking as work on tha system continues in

the future.

4- CC~e4~ Check

When the use: decides to convert th. data -.c _imi-

tlvze list format, a check will be made to ensure that all

data needed has been entered. The first check will be of

the header :ecord, tc see that idantificat:on and criteria

links are not nil. Then, based n the procedure for

subroutine record entry described above, a check will b-

made cf the function and procedure lists, to make sure that

60

each subzcutine has both statemen-ts znte-ed and a pc"-

linkirg it tc a contingsncy/task paiz record.

5. file Noraion

As a reminder to the designer, and for futurze use

when data in files can be read back into the system, 'no

data ent ted' is written in sections of -he file for which

no data at all has been entered.

6. Ix t Check

Since exiting from phase two of the system will

result in destruction of the run-tame data stzuctuze, a two

step Frccedure is uised to ccnfirm Than the user does actu-

ally want tc terminate the design prccess.

Chapter Five will evaluate tha system, discuss prcb-

lems enccuntered in inplementing a-, and suggest areas tor

future work.

P6

61

V. CONCjsoNs AND RECOMNDIONS

A. GCALS Cl THE PROJECT

The goals oziginally established with regard to this

project wezre to design a workstation wich would not reguzre
its us.r to learn a specific language for da-a ent-y,

present a user-friendly approach -to the user, and prcduce an

output of the data entered in a user readable format %hich

could alsc be converted to a priaitive list format.

consi.dering -this project as a first implementation, these

Goals nave been met. Use of the systam has shown that, for

a user familiar wizh the general concepts of :Iatelan's

Computer System Design Language and Ross' computer aided

design piccess, the screen instruction and error checkir.g in

the system are sufficient to ensure correct and complete

data entry. The preliminary work done in making changes to

data already entered indicates that it should be possible to

expand the system -to read in data from a file and repeatedly
modify data for different realizations.

B. PECELEMf AREAS

While the system was implemen-ed successfully, there

were dif ficulties in working with the GIGI termlnal.

Although GIGI's graphics language can be embedded within

Pascal, there was little documentation available on hcw to
use it in an interactive setting and how to use it other

than to draw pictuires. The most significant prcblem

occurred in code sequencas which shift.d the terminal from

an interactive Eascal command mode, such as reading an

Izput, to a graphics command mode, such as writing a

message. A ''' at the start of a sequence cf code is the

62

signal :c indicate tc the terminal that the code fc11cwi.g

i: Is a g:aphics display instruction. While the ':' at the

start of a graphics command is sufficient to ale.t the

terminal %ithin a seguence of graphics actions, it is not

sufficient tc switch the terminal from Pascal to graphics.

It was recessary tc include an additional wake up '.,

included as the first command in graphics rcltines, such as

claarizg areas of tke screen, likely to be called immedi-

ately fcllcwing Pascal commands.

An additional p:cblem cccurred in writing data antered

iz recc: back to tle screen for 11splay. While it was not

iifficul7 tc determine how to write a specific character
string tc the screen, it was less obvious how to write the

value cf a variable cr contants of a record field tc the

screan. The necessary procadur-e is less than logical, and

was fcund through trial and error rather than in available

documentaticn.

Finally, writing the graphics commands for each line cf

text was fcund to be tedious. Use of the GIGI macrcs was

ccns:dered tut dscided against for two reasons. When first

used the macros %ere found to be uzrelianle, although this

may have heen due tc the problems of switching from Pascal

to graphics commands mentioned ealier. More importantly,

-1e use of macros appeared tc decrease, rather than
increase, readability. -his is because they can be identi-

fied by cnly one letter, rather than by a word that indi-

cates function. An attempt was made to replace the graphics

command Strings with ascal variables of type lpacked array

of characzters ' which had been assignea -he graphics command

strings as values. However, this at-emp, to make the

graphics commands mcre readable and reduce required typing

was unsuccessful.

63

. . . . - •r "-' -.. .

C. PUTUBE WORK

There are several areas for future work as a result of

this -:clect. In the field of compu-er aided design ss-em
design there is much room for expansion cf the current

system. The syntax directed editor can be enlarged to allow

for a full block structured language. The contingency/task

data cpticns not yet implemented can be added. The means

for data change and ccnversion to primitive list format can

he fully implemented. Finally, the means to read data in

from a previously written file can be designed and

impl.mentd.

with regard to writing of data to a file, there is :com

for system modificaticn and further Expansion. The use of a

standard file name and file type is based on use of an cpsr-

a:ing system which numbers file copies, and retains previcus

copies until the user deletes them, rather than writing over

them when an additicnal file of -the same name and ty.-e is
created. It would be beneficial to allow the user to enter

the file name and file type when the decision is made to

write the data tb a file. This will allow different

versicns of a design to have different names. Additionally,

there is work tc be done in strengthening the link between

CSD/Ada and Ada. Includad in this is addl- tothesubrout-

ines usEd tc write the run-time data to a file so that the

cutput mcoe closely matches Ada format.
In the field of user-friendliness, there is oppcrtunity

to expand and add flE-xibilty -o ha a.structions included

within the design system. Introductory instruczions can be

increased, and the user can be given the opportunity to

select specific instruction screens and enter and exit the

instructicns at other than the beginning and end of the

sequence of screens. It would also be worthwhile .c take

advanLtage Cf the use cf case statements for menu code entry

64

and add a ccde for tle opticn of a help request. This woula

mak-. infcrma.ion in a specific area available au:ing th

data entzy process.

Much work remains to be done iz expanding and im:rcv ng
the system. Hcwever, it is clear that this project has

shown that it is possible to design and implemant a user-

friendly work station for computer aided design.

!

65

ILI

LIST OP REFERENCES

List Cf Abbreviations Used:

ACM Asscciation fcr Computing Machinery

AFI PS American Federation cf Iaformation-Processing

Societies

IEE institution cf Electrical Engineers

IEEE Institute cf Electrical and Electronics Engineers

1. Treu, S., "A Testbed for Providing Uniformi.ty to
User-Computer Interaction Languages," National Bureau
Cf Standards, 1980.

2. Ivie, E. 1., "The Programmer's iorkbanch - A Machine
cfr Scftware Development- CommuzicatioAs o ta_ ACM,

Vcl. 20 #10, October 1971, .- nr--7=.

O'Neill, L. A., Savolaine, C. G., Thompson, T. J.,
F-ank- J. M. Friedenson, R. A., Valsh, Z. D.,
crczald, P. ., Breiland, J. R., Evans, D. S.,

"Ejsi nes orktench - Effic.en- and Economical Design
Aid," 16th Desiqn Au-omation Conference Proceedin s,

4. McWilliams, T. E., and Widdoes, L. C. Jr. "SCALD:
Struct-ured Comiuter-Aided Logic DqAsign,' ' 15th Design
Autcma-ion Conzerence _£oceednqs, pp. 271=777, -T77--,

5. Mcilliams, T. B., and Widdoes, L. C. Jr., "The SCALD
Physical Design Suosystem," 15th Design Autcmation

6. Ha.acc, N. R., and Siewiozek, D. P., pplicaticn ofan ISE Compiler in a Design Automation Labcratcry,"K In,!e::ati~I -u oer Hardware

66

7. Hat e:, L. J., and Parker, A. C. , "eitrIas
Level Digita C e sign. Automation: The Design rrcc~zz'TI
15th Das_' _ A utoma:3icn Conference Proceed:.s pp-

8. SnCw, F. A. , S -ewiorek, D. P., Thoaa-, D. ZE., "A
TcLnclog y -Relative Computer-Aided Design S Sy StM:
Atstract R-Epresentat- ons, Trans Jzormat;.ons, and Deiign
Tradecffs," 15h Dalq Automation Conference
r -ccei~dings, pT-Z07,LZ,-93.

9. Ba-tacci, M. B., ISP Speci.fiications," 16th DESIgAu~cma-icn Conferenc Proceedin, p. 647 B!

10. Parker, A. C. , Thomas, D. , S is wore k, D., Barbacci,4
, M Hafer , L., Ileive G., Kim, J., "The CMU Designau tC m ati onr Systm 16 a~ Design Automati~on Ccnferenc9

11. ROSE, A. A., 9ojua Aed 2gn o
Mc::c;rocessor-Easezd Cc: IS's, 7=. Di39seraTz4n,

~ June 1978.

12. Ross, A. Aq and Loo mis, H. H. J:-.0 "Corn ute:- Aided
Design of cxcpzOcessor-3ased System, 5hsqr

1.3. aiehl, G., and Cie.tzinqz: A. , "sComnpute-aided Desi-zgnC f !IicrcprocessOr-Bd8ased D _Jg ta .L Cont=ollers,"1
hlicc2rocssso-rs aad Ii:0rqamL2 Vol. 7 #5, Miay

14. Rader, J. A., IE vcl.ut4 on 3 f the Philosophy and
CaFability foz the CAD of Digital 21od ules . 10Oth
Qz s ign A u tsmat icn Wor ks ho roed in, pp. ~82-2tts

15. A~iust:cng, R. A. , "A CAD Jse:'s Persuective: what
GEms DIcne Right, Wrong, and Not a,: Al " 17th D=eSii1n
Autcmat: ;n Conferenocs kt2 dianq, p. 51'/, IT!'_T97-

16. Damcda~an., L. and Easorn, K. D., "'Design Proceduzes
f4or Use: LzvoiVeMqnt aad User SuP2O~tII.pp. 373-388t
Cccmbs, M. J and Alt', J. L., co; utn Skil and
tze Uzt inr'erLacs, Aca e ic ?ress,1931.<

17. Pej'ed, J., and Carroll, M2. P. , "The 'Gap' Eetween
Users and Desi ine~s Of CAD/CA2 Systems: Search to=
ScJluticns, 19th Dsr. Autmoation Conference

gr-_ceaEdi s, pZ 737US, T!R_-E,-7 T7

18. C b, Y. "Why Lo We Need CHDL'S?," Comouter, Vol. 7
#12, Eacamber 1974, pp. 18-19, ISEZE Z!'5mc:7-S .iciety.

67

19. van Cleemput, k. M . IT Co ter Hardware Desc= Ftior
Langua 's anzhi App ~ca t.46or S 16th 5c
Autcmu~ion Conflerence 0rcee!d r ~q pp. 554-56C, ttz,

20. VJan Clreeui ut, W. M.,"A Hierarchical. Language fcr the
Structural Deas c:.et icn of Digital SyStzems," 14th
Desigqn autcnzat icr Co~ eec Proce edijg, p 3

21. Chu, . "An Algol-Like Computer Design Languag'E'"
Communications cf -, e -M Vol. 8 #10, October 1965,

22. Chu Y., Co.ue ranzt and Mjz~o~jmj

23. Dasgupta, S., "Computer Dasign and Desczi;p:;o:-
Languages "1 Advancas in Computers1 Vol. 21, pp. 91-154,
Academic r 77B. -

24J. Ch 1, Y., "CoM-Puta: System Design Descripticn 4" 19th
Desin Autcmatjicn Conference Procesdinas, pp. 84 2-195=,

25. Hill, F. J. and Pezezson G. a., Intzoducticn to
Sw hin r and ja s: q-n15'c ca3 n

2 6. Hill, .J "Introduc"ing AHPL,"1 Computer, Vol. 7 #
December 194 Ep. 28-30, IE-EE Coi~ter-Society.

27. Hill, F. J. , "U'pdating AHPL" .ntrnational _ycsjum
on Computer Hardware= DescrT:--c-: -Lanquaqes.

~ p. =-3'EEET73

28. H1Il, F. J., and Petezzcn, J. R., DjZt4- S Lt-=Ms:
Hardware O~gan iza,,i.n cand Desian. Miapte S, -- hn

29. 2eterson, G. R., D'Souza, C. and d;Il, F. J., "IAHPL:
Alanguage f Cr Funct loz Level Design," First Annual

4,,:cernx Ccnfrence on Computers and Comunca .1ons
TE!= ns, pE IMI'P! 42'

33. Duley, J. R., and Diatmeve=, D. L., "A Digital System
Descig Lanqua ~ DD L)br Tr~ansactions on Cowruzzrs,

4VcJ.. C-17, Sep tembe-r 19b, V ,TE.~~
Socie-y.

31. Eu~iy, J . and Dietmeyer:, a._ L., "IT:ans ' aticn of a
DDL Dig. t.A System Specification, to Boclear,
Equations,' " m ansactiots on Computers Vol. C-18,

qApril 19 6§ p-u-M=- 'I3;IZEICTNP-jtrociety.

68

32. Lo Gtm e yer D. I Int~oduci,*g DDL,11 Comutez, Vol. 7
#2, Decemter 1SI4, pp. 34-38, IEE~E Co!mpTE'-e--ce.IY

*33. Sh~va, S. G. ind Covington, .3. A., "Mo40dular
Dc-ccr:ptlon3/Sllmulation/Synthesis Using DDL,11 19th
Desiqn Autcmatzicn Confzrancs P:oceedins, p p. ' 21-727,

34. Cclladc, it., and Ta2.avera, .3. A. f "Design Automatlon
cf Microirocessors, A lications of 'I n: and
t1!.crcccmP uers, pp. 27-37~~f Li a 3I!Tl ect'-onacs a7M

MIT~TE-3771entation Socie-ty, 1980.

35. Zen1, .C. G., a nd Newell, A., "The PMS and ISP
DeciiS Sytems for computer* Structu--es," sj::n

Jc4irt computer Ccnzez enc- Procaadings, Vol. 36, pp.

F36. ac-ll1 C. G., ani Newell, A., Compu.r-ez Struct;urres:
Raadinq and ~ Chapters 2c~wR.

37. Bartacci, ill R. "comparison ofRegister Tzarste:
Languages for D.scribing Computers and D'ia
Ferruar-y 17?73-3,T to uersociety.

38. Pazkar, A. C., Thomas, D. E., Czocker, S., Camtell, R.
G.G.,"IISZS: A Retrospectiviz Viaw,"@ 4th Internati-ora.

S~ywios,.um cn Ccm uter Hazdwa-e Dec:T'c A q~.
P~~ ~ TT c S7e s 32 7,-TY.T-T979.

39. S4&cewicrek, 0). r.,, Bell, C. G., Newell, A, jcoMpjter
SI!r cturCI Eiaciples and Examlas, Chapters c and

40. Eil2cty, R. Bazbacci, M. a., Borrione, D., Dietmeyer,
0. L., HEiil. 3 n kLy P., "CONLAN - A FcrMa.

C stuion ~er d Ifo r arare Daescription
Lanzjuages: Easnic F::nczpies " Naional Ccmp4I.r
Ccr.-erence Proce~din Vol. 4,ppt!*Ut'277IT7

5 41. alti. Bar-tacci,1.; Borrione, D., Dietmeyct,
D. L. , d Ii "If F . J, and Skelly, P. CONLAN - A Fcrmal
Ccns::zuct on ~etnod for Harwar=- DescriptiJon
Lai, uages: Languag42 Der ivat 4on,"1 Nati,;onal Comp1c,:er

Ccz c-ae Poceeding s. Vol. i9, pp-.-t9=227-,7~T-L=

'42. Filcty, 1 Bartacci, 3. 111, Borrione, D., Dietmeye:
D. L., 4iJA, F. .3., and Skelly, P. "CONLAN - A Fcrzaf
Ccnstructizn fetod fcr lHaiaware Dasc:irtzion
Lan uages: Language Application," National Computer
Con er en ce Proceedinga, Vol. 49, pp.-t127326 7T7

69

43. P.icty, R., and Borrione, D. "The CONLAN Project:
Status and Future Plans," 19h Design Au.cma-.ion" C ¢:f ~ enc e r ¢eed nq s, pp - 20 ---7 2, - EE , .

44. H.l1, F. J., A Summary Discussion c CCNLAN,
Engsneering Exp 9i me t a -- o---Colle or
Engineering, Uriversity of Arizona, Tucson, July 1982.

45. Matelan, f. N., Automanti the Desiqn on Dedicated
Real T:.me Ccn-trol _'97sxems, 7- 1TWrsnce

rmZar'B-an atory,rl August 1976.

46. Cha~anis, A. daa-Machie E in erin_.q, Wadsworth

47. Spence, R. "Human Factors in Interactive Graphics,"Ccm~u . er AdAed Ea.iqn Vol. 8 #1, January 1976, pp.4--_73,PC- e3nce an Technology Press, L.d.

48. Martin, J., Desi n of Maa-Comvu-er Dialcoues,
Erertica-Hal1, 1973.-

49. Black, J. L., "A General Purpose Dialogue Proc-ssor,"
Naxicnal Computer Conference Proceedi'nqs, Vol. 6, pp.

50. Fiesn, 0. C "The Dialogue System: A Tci for
Tiesting and Ispfementiag End User Interfaces," Fi:st
Annual Phoenix Ccnference on Computets -an

~cPwuM7~i -~5 -777, 198=7

51. Miller, L. A., and Thomas, J. C. Jr., "Behaviozal
Issuers iN the Use of Interactive Systems,"
International Jcurnal of ran-Machine Smudies, Vcl. 9

f1-,5d-rne 77-'7 pr. ~ es
52. Smith, L. B. "The Use of Interactive Graphics to

Solve Numerical Problems." Communications or the ACN,
Vcl. 13 #10, October 1976, - 3W-o.6 --

53. Irby, C., ergsteinsson L., doran, T., Newman, W.,
Tisler, T., A Metho d~!oi for sez In-erface el
Xercx Pal -A0c a H-M;7e 7r5-f1lechnclogy Group, Systems Development Division, 1977.

54. Newman, W. M. and Sproul, R. F., Principles of
Interactive Compater Gra£hics, C -7p er 219M Z -IG I Ila'',is79

55. .ascn, K. D., and Damodaran L., "The Needs of the
Ccmmerc-al User," pp. 115-135, Coombs M. J., and
ity, J. L., ,mputinq Skils and the tser Intsleface,

Acaaemic Press,-T -T.-

70

56. Ecley , .i D. and Wallace, V.. L "The Arm c-: Jatui:a2
- --i G:a ~hc fan- acnne Ccnversation, -gProceedings, Vc!.

62 124, April 1974, PP. 462-471, IEEE.

57. Miller, G. A., "The Magical Number Seven, Plus or
Mlinus Two: Some Limits cn Our Capacity for Prccess4na
Infcrmat~or," Escho_ Review, Vol. 63 *2, p*

*81-97, lierica~~ syalg-aIX sc-at_-on, 1456.

58. atber, R. N., and L. Wilkinson, "Perceptual Components
of Computer Displays," Computer GraPhics and
A.licaions, Vcl.2 43, May-TB27--pp.273-75 I!72

59. Miller, R. E "Response Time in Man-ComputerCnversational Tr ansactions," Fall Joint Co cuter
Ccnference Prcceedings, Vol. 33,--P. 1- pp. 7 77

60. Spence, R. and Apperley, 3. , "Interactive-Graphic
MaL-Ccmg uter Liaiogue 1n. Computer-Alded Crcui-
Desiqn, Transactions on Circui-s and Sjstems, Vcl.

* ~~~CAS-2 '4, Fund7TI~ i~tsac
Systems Society.

61. Shn eiderman, E., "Human Factors Experiments in
Designing lateracive Systems," Computer, Vol. 12 #12,
cecemter 1979, pp. 9-19, ISEE C01515t17Socity.

62. :czelcc, H., "A Human/Ccmput-r Interface to Acccmcdate
Learnig Stages ommnuca:ions of : he ACM, Vcl. 25
*2, Fe4uary 1S62, .- U.o.-"Uz--.-

63. Walther, G. H., and 0'Neil., H. F. Jr., "On Line
User-Compurer Intrface - Ihe Effects of Interface
Flexitility, Termn a! Type, and Experience on
Per fo rma nce," Nat iona Computer Ccn ference
iEcce dngs, Vcl. 379-33T,7? .S, 197T-.

64. Relles, N. and Erice, L., "A User Interface for Online
Ass:stance," 5th In-e-_na-:ional Conference on SoftwareEzsieer i nq, T. czU-z-T , T'Z.

65. Price, L. "Design of Command denus for CAD Systems,"
1-n Desa.s Autcma-ior Confezence Proceedins pp.

66. Iray, C. H., "Cisolay Tichniquas for Interactive Text
Mar iulaticn," . Na ticnal Computer Conference.rcceedins.q, Vol. z37 -7247-25j,?A S, 193U.-

i7. Shneiderman, B., Sof tare PsycholoiI: Human Factcrs
in Ccmut.r and -- Z121a !st--t .em s, -!mEMIT 7,

71

11 h .

68. Thcoas, D. E., "The Automatic Synthesis of Digizal
Systeams" roce'dinas, Vol. 69 #10, October 1981, p.

69. _G.gn GIS Handbook, Digital Ejuipment Corpcraticn,Raya'a7d-1aassa'E-rtts, June, 19 1.

70. Stevens, W. P., Myers, G. J., Constantine, I. I.,
"Structured Design," 1& Ssels Jou;_al, Vol. 13 #2,
1E74.

71. Parnas, D. L., "On the Criter;.a to be Used in
Dcom posing Systems into Nodules "-Communicaticns ofthe ACE, Vol. 15, #12, December 172

72. Farnas, D. L., "Designing Software for Ease of
Extension and Contraction," Transaczions on Software

ing, V c. SE-S #2, = 'M77, pp. ,T'7

73. Millez, T. J., and Vellenga, J. H., "A High level
Language for VLSI Design," First Annual Fhcenix
C -nr erence on ¢camut_.s an Commu=ti-.-p.

74. Manwariag, 1. L., "A Compute= A.ded Aproach tc the
Design of Digita I System Conrliers Using
Micrcprocessors," 1 2th Asilomar Conference on

c~cuats, Sys~,eus, , pp. T3 ~X

75. Pzestcn C. W., ej cj of IDA Summer Study oa HardwarDescjio La;qua, -1ETu~3 Mense nigs
Scaence arts- !ecnnoiogy Division, IDA Paper P-1595,
Octcber 1981.

76. Waugh, D. W., "Ada as a Design Language," IBM Software
s; in Ehan , October 1980, pp. 8-T. .

77. Schwartz, L. "PDL/ADA: A Design Language, ATransition Toc!," IBM Federal Systems Division
Lecture, Naval Postgraduate School, Monterey, 3
Fetruary 1983.

78. Maclennan, B. J., The Automatic Generation of syntax
Direc-ted Ed-tols~ TeER , al e73t, lav I1s:rduatei

79. Ccau-.je- Aided Des--LScftwaze User Ma.uals: Sna x
T- =t707UM uT ee~s m19n82.rpcr

80. Shcckley W. B., and iaddow, D. P., A Ccncettual
Frame wcrk for Gramm ar-D _ven Synthesis, - -1--e3-

T72!'5oa V Ec-'i-e m3olr 1980.

72

81. dc:±s, J. M.,* and Sc W artz, 1. D.gl"The Dssign a~
Language-Dizected Editr or 0- lock Structuzed
Lan uars EA o- Proceedings of the ACI

t e hi nes.

82. Ccnnsll, J. 3., and Munsil, W. Z., "Consideratlons for
a E-artially Cc. ~ilinq Editor," F-;rst Annual Pbcanix

*83. Denning P. J. "Smart Editors.1' Coinmuzicaticns of the
&, Vol. 24 i6, August 1981, Dp.F37-L84. T eiteltaurn, T. , IT~-e Cornell Program Synthesize:-: A

Syntax Directed Programming Environment "SIGPLAN
lotices, Vc1. 14 #10, Oc-tober 1979, p. 75, issc111-5

V---C~uin ahns
85. Teitelbaum T. Reps, T.. and Horowitz, S., ."TheW

Vand Wherefore ocf the Crzell Program, Sjyntnesizer,
SIjLAN Notices, Procaedinq of the ACM S EGPLAN SIGO A

pp. V=7w7 INsoZt1, =on- T- puting Machines.

K86. Shani, U., "An Approach to Graceful Man-Machine .
Ccuezu'ica tion," First Annual Phoeni Cofrne n

g~giqtrsand CcminiT~al n pp.-Ti'51ConfeRrnce c2

87. Notkin, D. S~ and Haber~aa, A. Y v, Softwarer..Develocment Environment Issuea as Related to-7a
Ne--aI-MTE olVofpuT-r Scan -3, TT- nT~

Catzegie-Mazllcr Universi-ty, 1979.

86. ldina-Mora, R., and Feiler, P. ii.4 "An Incremental1
Prccz:ammin g Environment' Mz~ansacmlons on Scftware
2n n eJ_n. Vol. SE-1 #7 ier9 T p

89. Medina-Mora, B., iztax-Dic tad Ed- _j TcIwards

Pennsylvania, M1arch, 1982.

90. Sa~cnas, T~ "Im pro vin the Yan/Machine In-, sfaca,
Niw Flectronics, Vol. 12 #19, pp. 86, 89-90, Grea-t

'37fitT Octo1= ber 1979.

L

73

APPENDIX

CSD/ADA

Packace design standard is

type analog is integer;
t ye bocin is boclean; -- * true/false
type ext fixed is integer;
yp- ext-float is integer;
type ant-fixed is integer;
type int-float is integer;

end design standard;

with designstandard; use design standard;

package ccntroi syst-m desi gn is

-- identification block

-- identification data

-- ci teria block

-- criteria data

-- ccntingency/task block

-- contingency/task pairs data

-- evizcnment table

variable : type; -- additional glcbal variable data

-- sutrcutine list

function name (input) returns type;

;rccedure name (input; output)

end ccntrcl system design;

package bcdy control-sysmsm_design is

(* ccplete code for functions and procedures

listed here *)

end ccntrclsystem_design;

74

SYSTEM OUTPUT

2

-C

x

o 00

IC
4V

c a C

44

Laa

-a C

UeC

4 0

C C 0 U a-
o 41 4

S C 0

OC - - - C0
t C C

0. 62 6x6
4

I

bes aviabecoy

00. 00.

c N

00 on

of-,
4,

41 4

E 0

JO F

C C

cm. Q ujG-!! I .

-c c

4.J CL

0 c 10 0 (b

76

L

H'

-- -----------L

I1PLZENTATION CODE

f--.Q

cp

cp

c II

n. - m 4,C

a4 0 . 4. 4.0

c n. . 00 0

: c. C c c c 0 L

4. C, -- .

c -c 0 f . 0 0 - c ON 4. .0-
aa a4.w1 - C 4 1

- o- & 4D.!4c . 'o co

4. C 0- 4o 0 c

- x 4.. C 4. 4 . 4 . 0 0 L -
rI a.. V 'a M 0 0 10. 4 . *C4 . .

CL 4. 0 00 0 of so 4. (C n . 4 C 4 C 4 4

* C 0 - 4. .U 4. . U 4. . . - C C U - 0 3- .78.

101
0-M

C p61 0 o4

a1 aac7 0a 4

c ata

0 CL

79 .

10 1

.10

C Z

1 40 c

C U, .0 4
C C r 4.

4C 4

v u4 U1 C

*4 - L -0 4

2 C. 4 C..C.

Q. C. c C
x 6 *. x.C -. -
M. CL IQ 2- M. C

- ... CS - 41 £40 C

14

Is

C

C- 4,

41 c

4,I&1

ic

a - xu.

41 10 D 4

1~ U 4.81

Ic c

F 1 1

41 m

c. ...

o 4) It is

u~~ , oa a.4~t

c S 0 0c C -4c -
c o. *u 4.U C

* C U -4. 082

IcI

I C 4

I- C 1

aa
& 0 0

v4i a 14-..a
c- c a o -.. E 0 CcE

c .. 1 -. 0 GU . 0 6 Cl

C. t. I *. -I -,O a -' z

0 0t 1 UU . . 0 -- 0 C .t
a. 0 aa. 2aai-. 0

1,4 0*i4 .O I UI .

-. C 0 0 C y 4 Ce 4 0 o-

a...*-~~ 0.. aC. o co4 0*I

P.. .. 044 - -...83,

sin~, rrrr*- e -r~, ,-

* S

c 1 1
!a - - .

0- c-4

C6 a 0 4

L Z. 44 a

- SF 4 4.

a r- Q 04.4L - -

C, C v 4 t 4.4 - Lr

0 -f- g.- 4. 4.i

Of . - 4L 44 1C 1.
m* 4 - -a ; is 4.. * i

CCC *- *c XX Ea c

a, - 5. uI
.--- ~ 4 ~ .i. -ii . rr u-- 41,

*.4 4 -L .i4.0 Ii..4-- Fe -

C a II

00C1 ! -IL c ur : QI
0 c 6 6 c5

I. c C a CJ

.

CC 4u 4

-o.

S. oo.S. S

Scc - --- ,T CZ c
IQ a 6

|. C 4 44•

c IcJ t, C 4

8 6C

AR - -V

ciD

le c C

M --

0 10 -

v, rr aL t 4

* 4141 LILA LA87

* *.,. * *. -* r rr. . -r r i- rr .I-

A0
loo1

414

ua a
a a

o0 3C .1 a- 4 aa,
CP -- -u 7-'1 DC4, b

.c at

00- 6. C.'C C) L ma

41.4

t, 0

> M c

o~ 04

C- c a

r 0 a 0 ouu 4,

0- - 4 a

10- a C y

& 6L0 C C 0

>6 89

61 In

00
uC

& 10

4In

00

*
S

14, IV .

Cv

u 41 3 1.

10 -'
u

CC z 1 9) CL

4' 464.4 0- 090

04 0

ILI

ICI

4- 4, 4,

; z. .- .; -

4, 4, 6 - U
) C- U 0. n

. . .- .4.. . . .

w- w- vV r---r V V- -r- .- - - - -- - - -.- - - .- - -

(I

4, 4.
C S
o 4.

a
a
0 -

4.
0 -

4.

4. -

U, - 4 4.

4. 1
- 4- 0 -
- 4.

a
I C -

1~ 0

o). ~ -
U, ~ U. *C C

0 4. 4.
~ 4. - 4.
4. 4- C 4. 4.
- - I~ -
C 0 C
4. 4. 4. 0

U, - U,.
U, - U,
- U, - 4
4. ,~ a

4~ 4. U
a c 4. ~ -
C C U, - -
- U, U,
u .r C '.
C ... ~

4.
a

0 . . U,
.4. - -'~ .- , a -

.- u *.u *.U *.U *.U U

CU, OU 0) 0) 0) 4. 4
.r.. -- a- - -

-J -1 -3 -I -1 3 -
4.

0- 0- 0- 0- 0- -
~r C~ 0U~ ~U, .4, 4

0- 0- 0.. 0- 0- U4- U
0-* ~

* C 4.

4. 4,CC CC CC CC CC :C C
- C- --

04. 4.4. 4.4. 4.4. 4.4. -4. -

---------.-.- C-
4.4. 4.4. 4.4. 4.4. 4.4. 0'
33 31 33 31 ii U) ?~

C
4.

92

-. w r~r w'i ~'~r -' am

I)l1

E IV

1,

2 u 4. c v
C 0 ii 0 c c

a~~~4 >- 5 . q
-r -C

-1 n. 4
i 4. c
a~i - ' 4

A 10- 4

4. a- .4

.v E L-

4, -0 3 4, 3 -3
& a , a L 4

-u % aL

4, 4 C 4 93

- -~ - -. -~ -~ - --. '.~-.. -..-- . .-.-. ..-. ~--.- -,

iJ

I

I

I
4.
4,

C
4,
4,

4,
41
41
4,

a
S -

41 I.
4. 4,
4, -
- C
*.~ 4, -
41 1~

41 4.
~ 4, -
*.~ 41 C

41 4, 4,
o 4, 4, 4.
- - 4. 4,

a
C I~ C
41 4 41 4,

41
- 41 4, 4,

4, C 41
4. 41 4,
o - I 4.
41 .C -

V 41
41 41 4.
C C 4. 41
- -- 4, -
41 41 - 41
- - C T'
C C 4.
C 0 4,
U U 4. -

C
4, 4, 41 41
4. 4. C
- - U

C C 0 41
4, 4, C ~

I
4. 4.. U 4.

3 1 3 3 -

- - - - 41
41 41 41 41 a

4,
* - . . 0
- - - .- 41

C C C C ~4, 41
- - - - 4,~ 4,
* 4, 4, 4, 4141 4,
- - - - 4141
- - -- U41 4,
4. 4. 4. I. 4, -
3 3 3 3 41 -

~ Vc.. a
*V C

C 4,
4, -

I

_RD-A132 085 USER-FRIENDLY SYNTAX DIRECTED INPUT TO R COMPUTER AIDED 2/2 *
DESIGN SYSTEM(U) NRVAL POSTGRRDURTE SCHOOL MONTEREY CR

I F B J SHERLOCK JUN 83

UNCL!1SSIFIED F/G 9/2 NElEEll~lllllE
I~lEEllElllllI
EIEEEIIEEEIIEE
EIIIIIIIIIEEI
EIIEEEEEIIEIIE
llllEEElhEllEE
I.

V~' -% -*------------
-.

* *m

L 13.6

L
o

o

1.8

$1.25 Hi 1.

..

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

Ap2

i °' . o

. ° 9..9 * .9 9. 9. -~

* rp rJ fl rrr w r . . ' - -, -w .' rnrrww rrwT. rr rrY-7~r7y.u ~7 Y~W 7 I -Y .r E1.~Y.7Y-~-YrI - .,-, 19a, a . I . -h

I

hi

- I
C
C,

a : C

* t C C

C 41 a-
41 . C

C - - C

a - c 0 0 a a o
* a 0 0 Dfl C @ '%J .2' ~ C

41 -
C L -

4 0 0 0 0 0 C C 0 2.

C u - - -O N N N N N Ma N
41 OL .2' .2' f .2' U' 2' U' 4'

-' .. 41 -
- a~ -C- C, C C 0 0 C C, C ..

* 41 LC L4 -...- -
0 LV 41 F

IC, - C
(IS 4101. 0 2'

* CN .. 4 CC C C C C C C C -
41 1. Ca-C - -

C 40 -a- 00 41 41 41 22 4, 41 41
Ca- 00 41- 0
I- .. aa 41.- - -a- -a- .- -- .- .- 0

C c. I L 1 1 1 1 1.
o '2.j41 41 - 3 2 2 2 3 3 3 3
2. '~j CLa- 2.

-- 0 41,
CS 1. -sIC

C -- 41 L .2.
4. - a re

- 41 414)12 a 41 CF
4129 - C 41 0

* 41 C 410 - N - 5 .2' C N 41
- -c - -410 c u a.

0 (6 La- a- - C to

- 2 - C - --
.. 41 4141 41 .-

00 C S-C a C 0 0a-
- 41 - Ia- C C C a

C- - .l.. 4) 41 41
41 (6 a-u I F
S -,

4-2 6. C C.
2- 24) C

2-2 - .- -~

o
41 C a

3. 41 aK
95

0 2

411

L I

SD 0 a

1 0.

41 a C' no0'j It I.-- - t p
z - NL 0r ~-r

4. Si - - -96

* S-n - -~ ---- z

I~~~~~~~ C- ~ r - r r ' ~ ' -

c A

0 C.

41 cc

I" L "U ti w p
a c 7 10 0

-at 6 1
IL 10 0a .tC

V A -97

0 IC

c 41,

o IC 0 3-44
34 v 40 3-c0

'o 43 . 0 -

* 30

6 A, 4 0 4. * C

a C C C C C
4.a 0 *.0I.

c 7 0 M3
4 3- 4. c 3- 0 43 c 4

o C , V 1 U , Z 0c - C L4 T

C
40 - - -: '4 I ' 3

a - a --

c ,c3- v c x ,- c w- c
-. a, 9) a 3 CL In 6 4 -

It

u

.E

n .7

5. : .

.0 , t, 4. l 4 # 4 a,

'a I. 4. r -. & 4,

la v. a. 4.'0 4

4. U . C 4 4. -U 99

a 0 .1

4 47.

0- t -

P4 4 4 &. -I 4. c

.. I - - :- 4 - 'Z 7

*~ L,

4 C

6 m UC z C (.. L

4. 0 4 C. C 100C

4,0

C

to a
4.0

.u L 1 al cl 4 4, t. - k4 c

6 43
Cz n aI.- t -_ -D* '

I. * I I ! , c c z

it f 3E E I
u X

C '4 0 0C
c ZZ c

4. -
C C

.~ ; 101

14

a, c Lc 6 - - I .- -~4 - 4 .0
-L~ u. 0 L 4-

I ! c c c c - c,

C~ ~~~~ C - - --

o~~ ~ CL 0 0 0 CC

C I ~102

41 41

Ic, 11

2 a

4
4 4

c 1.

4; 1. -
.

0

LA
ac U '

-~1
C - --

- 1. - ~ . C103

- C

C4 4* *
0 41

o .4*

4* .* Ca *

- 4 0 -

- U. - 4* in 4*

10 4' CL 0

* C 214.

.3-- zI

C C

10 CC

- a c-
C1 '1 a, 'I

- - - 6) 3

- U - -.- -1-

cj

c I r

cC 0

1 to C

u .- 4 -a c

ua a c
E. u

c A C U 4 F 1
v *

5 61cC C c

6 C 0 1 1 u iu l
F F .4- = -

1. w0 C C
41 1 3

- F U- -Li

c .- c c

106 -03

IcI

u9

E ON

U 4.

0 4,
.tC

a 10 c

C In 0

a. 40 4L a

- 0~ a '~107

2 C

* a F l
U 46, 4 - =

o 41- ~
r 41 6 - -C -44

Cc Ca c C - 4
C -c %14, * 4 -

-c t z C' 4,3-

4, 0 4

aa

c - 1 a fi C f

7- - 7 - 'Z 7 0

c c 0 0 C 0 0 r'., CC C c

to * ** *1z 41 "1 *. 1. 41 ., 1 , z,4 41 %.*0

e4 a* CI. . 4L

* * * * * 3F -- - 0 4 * .3.

4, 4- * 4.- 4,- 4, ~ 4, .4 -- 4, 4, - C C 43 4, 10
C~ ~~~~ C C1 C 4 3 3 , C C 0 C0 -- -- -- C -C -C CCCO -C- i 4, - - -- C CC-

1083. 4) - -

IcI

F C Z,

4, 0 CA

. .- .5 c
4 7 'A 0 -&

c D 0 1 01 C3 *1

0 0r C
-~ 0 *0
0 - .,* , ~ - - ~ J - -

* * * * - - *109

- - - -* 0*ILI

* C

o~1 C -e

16 U0 -' -

C~~~
c ~1

16 .~1 0 F

I c6 06 C .
c6 &6 a. - 16-616 1

E 16 I v 6 0 IL- 6 C

16 16 c 1e6 16
c c .

02 0

- 16
-~~ C 6

o 16 -- CFm

16 U U 163 U U U U 16 16

- - -16110

a6

z 10 -

- - 47 4

* 4

Go 4

C - - -

-n 13 In

r Ir
CL ~j -

43c
4.9 4.-. -

Uc

4,

a*a

0 -

4~~1 4, 4 , ,4

Er U~0

a 4, - -

V 4) C - C *4 &

AV.,- 4, _p -1 -C 41 4 , ,

I. 1 4 04 1 0 : 5 :c r
3 ~~ ~ 41 4, 4 - -

2 .1 Uo U. Cc f . E i

1 CK x

a. a (L .- 0-

IA '- 'E

- C 41 - -112

6- - - , "I

a .

wo 41

c 41

in 3

C *

C -

CP
4113

00

.0 1 4

c 0~ 0 016

Cc 41 .- 1 :2 U.

U~ 0 L '
01 .0 4, E1 ~

c C C

-~I 10 1~~0- N '

S- . - C1 40-'C.~~ .- . . -0 .O-
CL D 0 m U' * .

3 3 3 ~ I N 401 3 1 3 N41'114

C4 C i

* -0a - tf4.4

0 0

a. 14, 0 0 6
a n A. 4. f f

- c -. - E. 6u C1 -1 0 z L. 4. 4' Q0

a IVta if.

4.4 -
c a-- -1 4. x 41 C:

-E to -if -0 - 1 a,-

A0

4 0.

7 1 0

c 40c c 4

4. E..

* 4
7 7

41 4,

II V 4' ,

0r 0 . C 4
4, C a ..- In

- 0 - .114

01

IC c

4,C 4 4

4e

00

4,1
E m,

- 441

C - 4117

4t

[0

I. 7

lb v

qC

's 00

- o

* - - *- : -. C-_

'" -" - -- - - - - - r -

c ct

9 C C a C a a a a a a C C " C C ." 0 0

414 0 l A l A l A l A l A l A l A l A Al Al A --

4- a. -8

a c

4*1

- Ic
44

4k Z a I.
U

oo *-0 .a- c4,

1 C 41 1

C C £ C or

-- U 0~ -119

0 ~T .-

a, c

S 0

& 4 Cc .- - a

41 41 0 .

M1 I * C- a

A, 0e mQ

c --

w u C 0 1 M.V

41 4. C - C
* C r m 4

-~1 r, aC
6a 4

* L .

A

I

II

IT

0

IT IT 2
C
31

S

31

5 41
7

o 4

C
IT IT .- a

U
I' d' 41 -
41 31 - - -

U 7 L
S IT - - C - L C

41 41 0 41 C 4
IT 5 41 41 4 7 4 '4
41 31 41 41 41 ~ ~ C

- - C C 41 - C -
- S S . . - U -

.. 4- - - -- a -
I. I~ ~ - U U 41
U 41 31 - C C - - - .- -

C 0 ~. C - a4 41 41
- s .r 0 0 - C - 41 C -
41- C C - - 3 4 P
-

t
J - -. - 7 0 - 41 41 a -

41 41 *.7 41 41 C * C - C. 4 U
7 - - -' '4 41 - - - - £ . - -
4 5 IT 410 - 41 3 '3 U - 41 ~ ~ U -

* - .. .* -u - *- 7 7 - C 41 41
* .. - - CU C - 4 4 - - - - so

C. 41 31 441 - - - 41 41 41
U - .- 41 - C U U 41 - 7 7 I, I
- - - - L 0 - - 7' C 4 4

.4 C. C IT 41 7 - 41 -

C CC - > 4 U U 41 41
S *. - u - - - 7 0
41 41 - 41 C C U - 41 -

41 0 41 4 u.S .. 7 C C. 0 41 C '
- - 41 41 7 C 0 0 7 - so I. Cl
41 -.. 0 41 .. c C - *- r a C
41 CC - C - - 41 C - ii - Cu C -
- 1'C 00 U 41% K - U U - - .41 41 41
*- I 7~ -> - . C C 41 C C - - C U
41 -- - 4. CU 0 41 C C Il 41 - C

1.1 .~ 41 CC 1. 0. - a 41 C C C' -
- C- -- - 441 - ,- . - - - - - - -

- - - *-- :- 41 -a a - - - - - - . -
- UC C - - -

- -a -- - *- - - - - - - - -
- 41- 4 - - .- - - - - - - - - - -
7 41.. 41- . .. a a a a a a a a a

- a. a.. c. -a - - - -
-- -, 4131 U CU N - -

- *-- 0-. .2 - 0 1 - - . - . - - -
31 CI -J -- 4C .. - 31 31 31 31 31 31 31 31 31

- C. C' .41 41 - -' 41 - - - - - - -

- - -- -- -. -- -- -- -- -- C.-

01 - - -3141. pa, - 41 age - - t t- t- 41 31.- 41- a..- 41 4 41C7 C7 41- 41 - C C Ct C. C~ C C C C C C C
* -4 4 0 4.41 41 41 -. 41 -.

- -C -.- C U' 1-C C 5 -7 41 4141
4- 4 4U 4141 41 * 44 - U 4 * 4 4 4 . 4 4 4 4
31.4141 >4141 *~4 1> - 7 31.-**.. . IC 31-C IC IC IC IC IC IC >C 31

- CU.. CU- 54131 0 41 C 4 CUt...t 41- 41- 41- C. C~ 41- 41- 41- 411-~ 41 - - -c a-- - 41 - -3CR 41 41 41 -41 41 -41 -41 -41 -41 -

- CaL CaL ic- -- 0 41 041C 0 *- C- C.- C-. 0- C.. C.. C.- C- C
rn-i rn-i '.410 7-41 41 55. 41 7 41.. 41- 41- C.. 41 41.. 41- 41- 41.. 41

41 . . 41 I. - 41 C -41 -L -L -41 -41 -.. 4. -L 41 -L -
3 73 71 -7- .. 7 - U tu 41 71 71 71 71 71 71 73 71 71 7

7 a
~ 41
- C
a 31 C
4 -

V 7 0
C 1 41
41 1. 0'4

1.~. 'I

Li

441,

IEI

C0 'o 0
a - C a

~~~~ C C

- ~ ~ ~ ~ 4 -u aC

-~ ~~~~~ C~ - - .
;z . - :: - - ; - a : a a 7

U~ ce 3 CA 2
I~~ 0 a a-C 0

4 a a a-UC 7

.- ~~~~~r .- 0 64a 0

a~ c : --- I C
c 2 V 2 t. U I- a L. I 'C I tI As

4 4 - a - aIa
- - - ~~~C .a aa a a a

* U U4 C. ~ a -~122



4.1

c C

0 a-

c. V 0 Q4,
04.1 0 0 0

6 4. w-. 0 C1
0 C.C 0 0 0 0

- a. - r-~E 4.4

-~ 0

a C,

**2 41 41c .4
5- -u0 4. 4

4. 1.. I123



Ck

10

04

1. 0 1. C 0
4

-1 c 4 o 4 

c a toC%7
-1 - 4. E7 c

*. CT

v c 0c

ACu a, 0 44c.
C Ue 9 44 >! 'a - 4. 4.4 u

-44 C- c.- ot 4 c @

Cu-~~ a

go- at c - 0

C. 9 -. CL

CC 44C 4120 0 I-124



I

I

I

4,
4,

C -
* C

4,
4,

* U
4,

4

a .. O

* 6.t
* *4,

06. C4o 41
6. -

040
eo

4, 6.

C
6. .0
4,~~* .. 40

* 0
- I. 404

- Cr6.
- 4,4 6.
- 44 ~4,.
-- 6.0 4,

- 0 4'C
1 4, 4,4,.-

- 4, C 4C
3 0 4,
* C C 4-

- 4 -~
-o C 4,

6. -U6CC- - 0... *~
6. 6. *.

- S ~4, 4, ~ 04,4,5
4,C S 0 0 6.4,0
C6. 00 4. - ~4,06.

-- S '.*- C 0-0Ua
4, ~. 16. . - 444w

664 -R 0~6 11144 -.. 1 0 4**0001
6. 0 ~
14, -- 4, 04,000-

0. C OCOS600
3 .---

0 0

0, 6.
4.6 0 C
6.. 1 --

0 0 0 0
C 4, C
S a. C 4,

.4

125

I



0 c

ft c
c u 0

Ic

0o j
4, c

E, 0

o CC

E 6

4.. .

4,04

O 0-
4i v
0 c

CI

4, CC~ 126



04.0

c 4.,

CL C

414

*- C w

*~ ~ -EL-

C- c -

-, , C

1. 0 £ , II

u C . -0 4 . -

004.- 4 -4

v- 7C cJ

14 - , Z4c ,- .

4. !4Go 4 r 41 4 4.

v 4. IC m L 04D
CL434 I6-.00 - 4

4.4x4 - .4. C
*~~~ .4I~g- IC C of - .

AC-4 A, 14. If LI
4.441 c. 4. c 0

*~~~~I 44 c0*4t L C - *

.. 4 . 4 . C o c-- * - C

- !0 4.. 0 W-

~4.4lb IQ~4 4 .- E . -
44. - - C *~'.... .lb

4.LL~ 4. .. . FLC 4.

40CC4 J.4, -4.LL.\. .4.- (4..

C..0 0 6. *. . '4 41 .. - .0 - L - 4.4
CC L4 - 6. C*. (I~~49I 4.4 I C 9 1L.
6.4. CL 0 4 4~ O- 4.04. . C4L L C-4.4IQ

CO O 44. 014 - ~ 0 4. - .L. . .127..,



LuL

-Cu
-4 6.-

D. 0 4'4 0
c to

r, C2 o, -t CI
C. a 9 ce

6. 24 U L C * t

4, 0 c I 0 oCLCC

C~~~ 2-I.t E29
a 6.020A W CQL0 a

4, 04 4 UCU LC 9.K~ PC I C,4 C- C -
2~ 0 1.* CI Z CO0 .0

-c V.4,It tI .. 0 7t .

C. * 09 -'-- -Cot C- 4

a - ob- V CA- tt-t C 41

C -, C CO a .jC - lC -Cu

0- ! 4 C - C 04, 'V..
tl - =- -: 4 - C- 4Itt

tO~~~ 2 C: 9 ~ a C

o 04,C -- I Ct, lb a

* V . I- - C ' F- Ut U 4
* 4 C -a- 4 4 -- t- -

- a -e -C 0- - u C12c-



.6

I

C
a
-o

C-

~E4
V 4.

- 4,
~A C

CC4

-- ~

C--

4~ ~ ~ U

a ~

C- 4~
L4
44,

V- ~-

-3

4 4 -

6 * 4 4
0

- 4,

U 4,

C
C
4,

q

129

I



C cC

4 u1

00

6 Ga

4 -

C C

cu 4 a

L C a
C M-0Ga

C~~ 
rG 

aO
0 ca a 1 -4

: *. Ga -G : Cc
16 4 - 4 ec c
I ;I 0 40 4

60 u 0 vL

- 7-C, c - 4c -

1a 0 0 -I c 00
D 41 Ga u C L -U ca cC

CL C

9 a. Ga - .130



rr

t 4, 0

c~~~- 00c0 4c '

41)
It, ~ ~ F F

I v.
c 4C0

4,~46

131



CrC

0 i w

C C

2 c-
c

CL'E

c V

i.~i 4

IP4 c le c-ca

C- - v- 7

CC

C 4

132



041

444

lo. tr 1

.4 -Z c
r~~~. 4.411 0 a

E. C. .. 0.

a 1c 04..041 .

v c

IC r4. u *C 0. v

0~~ ~ ~ mla - -

U *. 1.'4133



.11

4

4) c

c~~4 
.41j

L 4,U

c 0 L. - -1
49 a C 4 C 0

it -- 41 49 4 C a* 9
C~~~ 4194 1 4

4 l C94 L Q 944

*~~~4 9. 4111 .. 0 4 . .
o c 9. 0-1 u . 4 .

C u C 4C9 IC '0 .- 4 C4
*~CI CO 10 - 441. u 1

C 7-9 zC c14 2340 - 1 C
U A 40 0-4L 41 c 4 41 L..9 4

9. 4141 4* 9.4) 0 C u 1 - Z4

*~~~ ~~~ 0 414 .91 ti.9 C94 9~1 -. 4

U 4b999 0 94 -0 a0 c94 u0 r 411 0 I

49. 1.. 9.4 B44 4 ..

I 4949 49 C 4C cc 11 T1CC

C 499 1- V.4 ? .. ~ 0C >. - t1

I.0 419 49. 9 C 4994 +4 94 -- 4 T - L L
4 1w4 19 94 

E0V - 04 * . 4 14 4 . 9 .- 4

41 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C L.4 -4 '99 99 - 4C1-1194

9.4141041~ ~~~~~~ c1 1 0 49 .. 4 0.09940 9

4 41~ U CO ~ 9..-C~41 .. ': - - 1C

419.. C.49 4949 41 1394100- -4 41-



c 44 a 0

C 0

c 4 4u

00 r

C C

*~ C .

44 ~o. 0 cc

C C.
o0 0 ~C44. 4 4

L 4 4 0. V 1 C

0. u. u

44. ! U 44£4 44
a c 4 4 - - -f c

c v 40 44 44 -' u a 7
f r. 4 I c oV 4 t C c

- ~ ~~~ m .: V 4

S~ C .5404 4

44 444c0.4 VC 04-

- 4. -* ~ C.-.- 0 4

4 - 44 4.. UO-40 444Cc

-. -44 0 0 C.4C C .135.



-

o 4

6 4 c o 4

* *- 0
6. 4 l

-4 .. -

CC 4 - . .136



41~

4

c 4

v c

o , 4
4 v

U 41

CC L'D

U C- C0 U4

o 4 1 0 0 - e n

.. ~ Et 4Co

10* C -,O C -

r.iC 1t. & 4 1

64 41 CtOP
4- I.. Is6. t16.

*~~~t I C C.01

C 6.-.C 4. kM

C6tu 60 0 4

-~ ~~~ C- O.1C C-* O 4 4

446. C4. . 0

137



00

c 0

4, 
4

o e a

u
c0

4,00

0 0

4, -- 4 e

U 44

-1 o- c 4,

Co C 1,C

- L 4
o .0 L

6 F CV

00 4
- CC I

c 44 c
LU **0 044

C CO . F 17
Z'.4

- - 30 1,Is II138

IL -- ..



AA

411

t

C

- a,

139



r c It

4 4- r. 4,1

. 0 0 4 4 v U-

1 6 a04 - .. I

C c D u C - 0
4 up 0 C c T

4 40 4.4U

02 02 u

atat4
C c .. c .

- 2 44 -,e 41

* C ~ ~ II ~ 140 -1



A

C. c

4, C

C, 0

C C w-
0 C w4

4u 4 a.. 6 0

c WI 44 
p &- ' 4

x lo F0 -D 1 4

*~~ CL0

- -. C 4 4141



4 ,'4

'.0

t-oC

6 Ca

00 4v

c - L~ 0
0 0 F0 V-C

is t CU

N 0- 1C I-t,

" ' 0a *- 0 4 CL It

L ) 0 u E C u z 0 16 -c -t E

C C

-~~~ 0 4 4,
6 4 4 r 'l.1

.0 M W :I Icc T, '-

4l C O.

-Q0 0 OU 0I
It- ,,

0 Sa,

- '4 C~ 4 .0 4C'..142.



a,,

-a - '5

Cm

0

a C

6 - Cu 7

* 4 6r1 U 4C
c c - .

v 4 m , D - U 0 C
- Z C -. 914 C ON V

4 -- - 00
v I',- c L1 1

2C 4, ... 41

-0~ ~~ CLU 0 - )

C C-u U 0-- u' w, Q 40C -

6 r .~ U , U C 0 d ZgO .7 0.- 4 a
a, 4# 0~-- V V 4 C - )4 CC C 4
u aC~ E-~ 4, ClcS C 4, u 4 C

U~~~ z -' *V 41C
4~~ rCC 4 .U ~ *- - 4 0 4
I. ~ 4CC4 C. C V C ' L g~ * >. **

4, C L4,4C C- L ' - 4 ,t~g **C *.L. - ~ L 0

- CC CLU C R' 04, ~ C 0 -1430



4 0 1

on 41

c' m 0

4 0 c

- C 4
)* 0 9 04#

-- V 44 
4 4



4.1 c

0

4 4)

CZ

I.C

C C)

o *.tcu0o0
0 - - 4 44 L

aa

'-.3 4 -4

0 -*
7- L .- 4

* ~~ C uL c

o6 C-, z
U 4- I

CII .- c

1 L Z %IC

* - L145



.0

0C

c c

C 
-

o "Ci c c '

0 0 c0 0 4 r >o

eu ~ ~ ~ ~ ~ ~ LOL 1 4

C~~ ~ C01 C
C. ck

4~~~ ~ ~ ~ 4-6LL I
Lt 4C L)

0 t0 L . 1c 000c .
w IC L u r)u z o)EC,>

IL -
CM mZ C

146C



0.

C '

UC 0

-0C 0

Ir.

: ZC

c- £

*6 C

147-



40

> C

4.4 r 4.
-cc ct

c, c c .

04 444, v

C: 0 :

6t 4 5 4 Z 7 ccc.
d Is. .6u C Or

C 10Cc : 0 00 0-SD1 L4, aC
- 2- 0 0 ,. 4,a 0 0

r a , e , QL

6U S.U C 0.0 St L

c 0 - a -a v -
C I . -C t t

5.0 5. 0 1 0. 0 U..cv

04 .. ~ C *. SI-

EU - 4 3 *.OOV C *. o~ -148



4

414

0*

-u 0041

Oa 4 aLL
I'D cQcL I

-4 4 z .4 r -c
-. n . - A z

c- a,1 11C r 4,4 ,4,4~ ItU~ .-
40, a. - - o 0 - 4 , 

.. u..-

4, IC aC
w u vU 3U 4, 4

£ 0 6 -IC 60 L4 0 - *. 0
U 0 c 0 v a, C4 ! ~ &. - 0

41 41

410~~~~1 T). ,4C O ,CC 0 . 0. L Cl - 4
C 4 1 CC 4, -0 -A04 . - C 'o

4 £ 1 nu U 0 - - ~ II U 4 0 4,4414 941



v0

40

4,D

4, 4, 4

do 4 - - -

0 cc 1 0 cf k c L

-- C 49 4, z. z - .

. C. >- ' L ~ 4

'*J4 ~ 4 C ~ 4 4, U. - 0 C U ~+ 4 4

4, ~,C 4,C C4,C COG 4, ,L4 04,LO -- 49C4,C C49 CL 4i

U -- --C.. -0. .-. C..00C -E 0 ~ -C** -.. C. *-ot

41 ~ ~ C 2L4 ., 44, 4 4 .

C L L L150-



C L

40-
-a

c

aa

C. .
4 0'

-, -- 41 , 4 4, 4

to 6 z c cc4 4.. 4 c 41

r - m vt c
48 -- 

a, c

z &0 * .. L , 4 4

4. - 4 'C 4.40P'C
CC !~~ It 4'~ .41

- -- ~ 4, C.'3 S I ~ S S I
45 4' 4. 4.. 4' - -0 , *C *' *C .Cs.

.- S. 4' C 0 4. 0 4''~ U 0 -

.5 - a-a - C4'C4 ~ 4 t . C t 55

~C 44 ~ C *- 4 ..- 0 4, -4 4 -, 4,~1515'~



a 00

L 4, l

o= 4.it
t.4 C) 4 C

'o4 4.-' c 4 41
2- of. .

CC 4.

t4 1, 0 41 1cc1 0 04
G- C-" -C

Ic c I.
-- -4 4. T

Or. 34to .a
o 4.4

c. c 4.0

4. C 4 1 4- 0 2.

-u- - -4.'.4. 4 152



c *1
cI

04. 4 0

le .3

;, .3: 4.40 0 i
44 0, .34, p

E, C I

rc -- o440

-. o.
4, 4, 4

q4--z 4, c AI Ic c

!34 0 T a

6r- 1.0 '0 .4. 
4, L

b - 4- 7-4 .-

40 0 4 4, 0 C. - .00 4' -
Vc IN 0 c. f). C 40 C r3 . t, c

v 4 
, 4

Ol C V - - - , 4 , 44 ~ -C

0V .3 -C4 CL a4,4040

44, 4, 040 .0 .0 - ~ 0. .4. 440 153 0



Z

4.I
4I

6 -0

i. r

e 4n

a, 0

41 4.

z .- 1 wv7t

r. z C. c -
a C

G. E 4. E4.4 .

6~ -64 C .0

-0 4C4 a.

4.154

4. O CL 4
-- .. 6... 4. 6
1. 6 4 .. ~ 4

.6 -4. .- ..

-, U4 .- .
-- 6 L6U44 -c-.4.
CC C .C4..46 0 6 . 4
4- C 46C 4 - -

C .4 6 *6 c 4.

6- C 64 6 --.C * .a ... a " "

. .~' .... .6... 4.

- - 6 6 L . ... . . 4. 4.

.. . .- .. . . . ,6C .. l.. -

-LC -. 6- .6- - - - 4.-o'

1..: 6.6'4 - .1. - 4Z



0

0

-q,

0

a c

a1 01

CC L~ 1.

40 61 0 1
cL - c r 41.

a a Q41 0 - T- c-d

0 0 . 4
I. - -41 uL a

r, Im C a. -Cc r.4 4. 4 .

-! -- 4 & -5L 4 ,Q1

-- ~ .. C f 4 u-,1

cC OC .: 
-a 

a cC 
.

41 ~ ~~~~~~ 41o-1- . a .. 4 46~
as 111. a3 10a1 o a a~ a - a

a- -oa - -V -1CC -.. C CaL

-~~ 0-C. 0-1014 0
1.0 44L1 ~ 4 ~ 0 * 41ll D

aS , * 0 ar~ ~ . -- .41L. 155



414

41-

41 41

II 41c

2 C

4 C 444

41 *Cc Q1

.~ ~t r

-c f7C -0.1 4

61 4 44 41 C1C 41
I4 .- t14 14 41 4 C z

- 401 
2 4 41

41t~~ w- uC C 1 4 4

Cc f. - C CC V 41 . . E

41 
U0 L4 44 C In a,4 I m &I

41 4. C 1 C. 1 .2 41C k, 4 c 3 L
.6~ ~~~ ~~ -U-C4 -4 4 - C4~V *C 4**> C C 2

* 04 I- A C1* 4 41 - 2 C

4141- CC 41c414- 1

~ -4 .- 41- .. 415C *- 41 1 1C56



C CI r C -IOU rr -j a-~ . .

C vd

C

£ ac

o V

* 4j , , i

c 0

Ic 3, C m 7 L w*C7-c i

C 1' o f ..

.. CCC L uag,

nAa -t L4 C L
C -a L~ sa - -1 - D C 0 - ..

a0 0 Cv

u 40 *.c t
4 C.E c a, ic1

L C- C - C- v C -C

.CC0034,~4 C 4 S1 C .
ICL -f C - - 4

a CC - C. C ~0 AC..LLto

* ~ ~ ~ ~ ~ ~ ~ 1 C7 . - a*



1 41

c a

C C

4 
&

CC C

a r
c 0 aA 4 1

mC C a

'c tc c - o

4 4 0 & C
t a0 rl .1 . rc

E. I. c i- A

a':~~~ c 4 -
owA C. C- 't t 1

t c t as Ca l- c

c * c a1 c:2

Ce .4 Cl-CF 4 F

-. ~~~~4 Cv l -

- t* tt IL-4 C.. - c 44 u o --:

-- ~~ C It - -4 CCA i I

-~~~ .. *..-. a-auI.C 4

£ La - Ca £ se 4 u *-

-- V U vC t.." 0-ta I 4158



I..~ 
0-~--

F
Uu

0,

4c

Q) c 41

41 .. C44

C rL C 4
F -1

4F C 1

C C 41 L; toCOID
40-

U~~~4 41 1 - wC

L~~, 
c, I 10 C .

L CC C Q1 - C 4
: !,4 Z1 V 0 CV

411. 4 Oc41>

C c

r c 41l v -0 01 4, C - cI-

0 C604 1.0 0 It 4 , 41 rC c

I C-' V -
.-. :-

A - 0- 1 4-1 I4

0~~~ LV t- C 0 0,C, -44) - 4

oLc 'c -c C" ' C-lu- 4 441 4* 1 4

0O~t C1 ) 4 LC~ 1 4 4) -4

~ * ~ - 0*~- - L4159



Uc

C

*1 -

C1 c

0 a

o c.

C1 - 42 -

44 - -c Cu C

C- a aC - I- 1
604 L L .f Z , C *. c

0. 0 to - 42 C
c l CC .0 I C It & LCL

cI 7C ;. - - -
a *0 IF' C C - a

- !;C4 V C l 1t C- 4 4 .CL
C C 42 c L C-.

-4 Cb 2 -C- -Cf-I
L :: L F

VI 44 a"WI 4, LOC CaCC

4. 42r *L.. C 4

- 40 .CL2U.. * 0.* .061
-c CO0 0UCBt L *.LC 4

II m4 SF CC F 7 - -
II~ *.SC at.4 t L - 4

*.C C-. C-2 - C - - 2 0.. -. E.160



2 p

41 v
rS

CMM

GIl

10'

ZC

L~ 4
uC C

'1 v C

C. It 4
. z. C

C C

C- . r. .C 0 c

r* C W3 - C tt r I

to Ca oaG

o 4,4 -- 0 *-1a1



.

F'-9

*°

*1

,I

a.

i'c4

m'a

•L. a

ttl tt: Ii

€ 162



0. -. -

c

* 00

'44 ..
CF 444 C

CD 0

V44 . - 1a
t 40 Co C. u

44 0 1,

c 0 c 1 0 0

-~~ 
0 V CV , C4 4

t!- 
C.-- 

- C

C C4 C - £ 4 I 4 4E ~ 44 4

163C



a;

c C

L 0

t CI

0 ,- r v

- c M CC

5 - : :r I -

+ 0

o B'

c I -o - o

CL Sz C.

-- V 3C 164

LOC 
0



.4 0

41, - 4

w -
c L1

P6 .. -

4. v1. 1,40

4,~ II c,.4

C.M 41

CU.u C. ::
041~-*-u -". -

4,0 ~c-CC

41C 0)-,U -4

C- CC C 414165



.6

Cb

,,

as
4

0 .-

o
Iu

4.4.

T .

4

. . .0 .

C- L, 0 . .. .. .. . ... L L : : T 'Z Z s 1n ..

m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t I u.• .t .t .a.t .t ,t .L

C~~ C[ C

00

4,I

16



CL

aa
Cc

C1

C0

a r I

0 0

I - o

t Ce

C E

F 4 4,
- C

oo --. ec

Qw -x aiV6 w L L C
I.a Li 46-&.

4i C L a . 6i 4L -.

C - C V tO 167



II

CC

434

0

,b C Ca

4- CcO41 0

0 1 -o I
ac 4- C1

06 0)Cl

1 .0. C
-~ 41 4

'c 441
C 40 41

4 L all1

- 4. * 4168



00

pc
0 4'

t C
0 4

CC

t ,
0 10

-4 0

4. 0 ' C

C C
c. '-44

A. 0 E a,4
C! 4' C. 4 . U

c c 6, S 4 4 4 c L
00 C. A 3. c - C.cu

7- '4'0 4 0 0 c
4.4'C ) 4' 41. ~ 4~* C4CC -

- 4' ~~ ~ ~~~~~4. 4. 4' -- 0 C .. --. *-

or' . 4' 4.* - 2 4L.4L C 0
CL' ' 4' - .C4 

4'4 .-

4'~ . .-.4 4* - 44. 0 CI -169C



at

41C

C.S

1 a,

r C-

m 0 C, 4 4,4,

UC 14 C o

- =, a a

0 .. C 4 
4. 4 4
C 0.' C , :L ...

* C - 64 -e ml -Q

4, v ~0 A O -

O4 U zQ o *

-~~~ * 4 4 U

.~~*4 4 4. 0 00 , S - .

- *, - I4,4 I !oe : 20-.

G- 14 ro .. C1 r o . 1
L L* 4. . L . *- 4

* ~ ~ ~ ~ 0 ci 46 4.1 . 4 E C4- V~ ,

L~~ aU 4 4 u
I = z C'

Co G L45 ~ C -O 0- 4.S~ 4

4. C U~ ~ C4 E ~ 4t *

4,44,,4 4 t~0. C4~ 4~054,44 04-170 -



p .

'A

p

-1
I. p

p

a
S

C

S
a
a
S
C La

- -a-
a- C. C.4Q C.
C. - .... S4 -o LOSS a
- 4 ~~~S-&
- C
* a &t*&
U --a- .a.~a'4a
o 55 ~4MO
- en.. LSM~**

.- L..o SO
V *.a% LC.* souS *~~-
a ~SS~ V

.E..4-a4
Sack -

*
A -- ,4 4.

c'.~nn .~uS
- a ca-SOS
- ... gg..4LC.
- aSCLL-C4C
U C.-~ ) y U OS

A
a - U
* a & -o *S - C -
* a *- -

- a a * a
* 5, - S S
4. 6.
- 3

V
* S C

- U -
- a - S C
- C.

r - a 171

-t



II

C6
0 aL
z a

I-a-

c r

CYC

4m 4 o

a2 a-- 21-U

-c A1 C ' -A
U..- 0C

a- -7 - .4c w lC-,

* *LD 4 

r c

C 02 0C a .

u 10 6 w u0 u II u G a -

I mmma -- CC - -C a-172



C t c

a04,

p -4 c .0
0 a4 4 .". :.

cc 0-

0~~ V. C ,a-
.1 cC , a a a 6a4 4 C

1 2 COI

4,lu V-I- , O

16 & c4, 10 . . . . .

4' o b 4, 4 .-L

c4, o~ U.
I0'- 4 - u 6.1 c

uC. '. 4c u Q

6. , %-

406.c ac ,

0 - 4 4173



E-c0

1410

C 00

SCC

a c -

CCC

10~~I 0 001lbo
c ra

o Vt n p 0

3~ ~ 4 ul

-C- C 1

etc c C

a- t .u To-4 a cb

c~~S. Cc Cc 0 c- C at

0 .- - -u e -C
-0 e6 4 II I ut

C 554.. .~L
- 4 .

* - root
- U C6 t -b- e ~

C~~ t -** -- .

* 5 *a - t C174



c L

Ir

a- c -

0, 0 4

* -- S

C~4 c ~ U~
4* 6 4 44,*4.

0 105



INITIAL DISTRIBUTION LIST

No. Copies

1. ref erse Technical Information Center 2
Cawercr Station
Alexandria, Virg.nia 22314

2. Library, Code 0412 2
Naval icstgraduate School
Mcnterey, Califcrnia 93940

3. repartment Chairzan, Code 52
"epartment cf Cczputer Science
Naval ost raduate School
Monterey, Califcrnia 93940

4. Curricular Officer
Compu-r Technology, Code 37
Naval Pstgraduate Schocl
Monterey, Califcrnia 93940

5. LTCCL Alan A. Ross, USAF 2
Department cf Ccmputer Science, Code 52Rs
Natal ;ost raduate School
Mcnterey, Califcrnia 93940

6. Erofessor Georqe A. Rahe
Department cf Ccmpu ter Science, Code 52Ra
Naval Post. raduate School
Monterey, California 93940

7. P:cfesscr Herschel H. Locmis 1
repartment of Electrical Engineering, Code 62Lm
Natal Pcst raduate School
Monterey, Califcrnia 93940

8. Ms. Jeanne L. Bowers 1
Department cf Ccuputer Science, Code 52
Naval Postgraduate School
Monterey, California 93940

9. Mr. Joel Trimble
Code 240
Cffice of Nava' Research
800 North Quincy Street
Arlington, VA 2.217

10. Prcfesscr R. Steven Schiavo
PsIchologyC e aztment
lie A.esley cl age
Wellesley, MA 02181

176



11. i rar 1
iellesley CcIleQe
WellEsley, MA 02181

12. ICDE Barbara J. Sherlock, USN 2
PIE 120- 3
Naval Electronic Systems Command Headuarters
Washington, D. C. 20360

I17

177



-4

17 X

'2A'

?':3 S.

jp~~tr~' &

ft" wA .1t

Ik'?

i* I I1 " 4

A 1w A


